Using virtual reality to study food cravings

Tracey Ledoux, Anthony S. Nguyen, Christine Bakos-Block, Patrick Bordnick

Food cravings (FCs) are intense urges to consume specific, usually energy dense foods regardless of physical hunger (Hill, 2007; Liu, von Deneen, Koebeiss, & Gold, 2010; Tiggemann & Kemps, 2005; Weingarten & Elston, 1990). FCs have been positively associated with body mass index (Gilhooly et al., 2007), and overeating energy dense foods regardless of physical hunger (Hill, 2007; Liu, von Deneen, Koebeiss, & Gold, 2010; Tiggemann & Kemps, 2005). Greater underestimating of FCs may promote improved weight loss interventions. (Brunstrom & Witcomb, 2004; Brunstrom, Yates, & Witcomb, 2004; Drobes et al., 2001; Fedoroff, Polivy, & Herman, 1997; Fedoroff et al., 2003; Giesen, Havermans, Nederkoorn, Strafaci, & Jansen, 2009; Gilhooly et al., 2007; Harvey, Wing, & Mullen, 1993; Jansen & van den Hout, 1991; Lim, Norman, Clifton, Noakes, 2009; Martin, O’Neill, & Pawlow, 2006; Meule, Westenhofer, & Kuhl, 2011; Rogers & Hill, 1989; Rogers & Smit, 2000; Sitton, 1991; Tiggemann & Kemps, 2005). Greater understanding of FCs may promote improved weight loss interventions.

Introduction

Food cravings (FCs) are intense urges to consume specific, usually energy dense foods regardless of physical hunger (Hill, 2007; Liu, von Deneen, Koebeiss, & Gold, 2010; Tiggemann & Kemps, 2005; Weingarten & Elston, 1990). FCs have been positively associated with body mass index (Gilhooly et al., 2007), and overeating energy dense foods regardless of physical hunger (Hill, 2007; Liu, von Deneen, Koebeiss, & Gold, 2010; Tiggemann & Kemps, 2005). Greater underestimating of FCs may promote improved weight loss interventions. (Brunstrom & Witcomb, 2004; Brunstrom, Yates, & Witcomb, 2004; Drobes et al., 2001; Fedoroff, Polivy, & Herman, 1997; Fedoroff et al., 2003; Giesen, Havermans, Nederkoorn, Strafaci, & Jansen, 2009; Gilhooly et al., 2007; Harvey, Wing, & Mullen, 1993; Jansen & van den Hout, 1991; Lim, Norman, Clifton, Noakes, 2009; Martin, O’Neill, & Pawlow, 2006; Meule, Westenhofer, & Kuhl, 2011; Rogers & Hill, 1989; Rogers & Smit, 2000; Sitton, 1991; Tiggemann & Kemps, 2005). Greater understanding of FCs may promote improved weight loss interventions.
where variables can be precisely measured and conditions manipulated and controlled. Studying FCs in a laboratory setting allows for the use of objective measures of FCs like salivation (Nederkoorn, Smulders, & Jansen, 2000) and brain imaging (Pelchat, Johnson, Chan, Valdez, & Ragland, 2004), but inducing robust FCs in this setting is limited by the need for artificial food cues without accompanying contextual cues. Examples of laboratory stimuli include photo images (Fletcher, Pine, Woodbridge, & Nash, 2007), food words (Pelchat et al., 2004), imagery (Harvey, Kemps, & Tiggemann, 2005; Pelchat et al., 2004), and actual food (Brunstrom et al., 2004). The study of FCs in real world settings is limited by the need to use self-report measures of FCs which are fraught with bias (Gilhooly et al., 2007). The association between environmental food cues, craving, and actual eating behavior would be more clearly demonstrated if people were put in lifelike scenarios, with standardization, and their reactivity measured. This was impossible before the development of virtual reality (VR) methodology.

VR simulates naturalistic environments by delivering complex multi-sensory cues (proximal and contextual) through an immersive human–computer interaction (de Carvalho, Freire, & Nardi, 2010). A head-mounted display and tracking system respond to user movement by changing the displayed scene in real time as if one were looking around the environment. Evidence of its realistic immersive effect is that exposure to drug-related VR scenarios evokes robust increases in craving among individuals dependent on various drugs of abuse, including alcohol (Bordnick et al., 2008), cocaine (Saladin, Brady, Graap, & Rothbaum, 2006), marijuana (Bordnick et al., 2009), and nicotine (Bordnick, Graap, et al., 2005; Bordnick, Traylor, Graap, Copp, & Brooks, 2005; Bordnick et al., 2004; Ferrer-Garcia, Garcia-Rodriguez, Gutierrez-Maldonado, Pericot-Valverde, & Secades-Villa, 2010; Traylor, Bordnick, & Carter, 2008; Traylor, Bordnick, & Carter, 2009). VR induces craving for alcohol with effect sizes typically ~2 SD in magnitude (Bordnick et al., 2008); three times the effect size found in traditional non-VR cue exposure alcohol craving research (Carter & Tiffany, 1999a; Carter & Tiffany, 1999b). In addition research has shown VR evokes negative body image (Gutierrez-Maldonado, Ferrer-Garcia, Caqueo-Urizar, & Moreno, 2010) and emotions as would be expected in real life scenarios among eating disorder patients (Ferrer-Garcia, Gutierrez-Maldonado, Caqueo-Urizar, & Moreno, 2009; Ferrer-Garcia, Gutierrez-Maldonado, & Pla, 2013; Gorini, Griez, Petrova, & Riva, 2010; Gutierrez-Maldonado, Ferrer-Garcia, Caqueo-Urizar, & Letosa-Porta, 2006). Building upon the success of cue exposure methods currently in use, VR can offer exposure to both proximal and contextual food cues without the limitations of artificial cues, excess measurement error, cost, or logistic challenges.

The purpose of the current study was to investigate whether food cues delivered via a VR environment with realistic proximal and contextual food cues would evoke a stronger craving response than (1) a neutral VR nature environment, (2) photographs of food or (3) plates of real food without the contextual cues to accompany them. A second objective was to test whether the VR effects would be more pronounced among women primed to experience FCs with a monotonous diet (MD) condition than among women who continued to consume their normal diet.

Methods

Participants

A convenience sample of college women were recruited through advertisements on the University of Houston campus. Males were excluded because women report more cravings than men, and men and women report having cravings for different types of foods (Lafay et al., 2001; Pelchat, 1997; Weingarten & Elston, 1991). Recruitment flyers called for females 18 and over to participate in a study to compare reactions to food images delivered in real life, by photo, and by virtual reality. Women were eligible to participate if they were at least 18 years of age, could read and speak English fluently, and had a body mass index (BMI) within normal limits (18–25). Women were excluded if they were currently dieting for weight loss or had any dietary restrictions. Eligibility for participation was determined via telephone screening.

Materials and measures

Demographics

Participants completed a self-report questionnaire of personal age, weight, height, race/ethnicity, household income, and year in school.

Food diary

Compliance with dietary condition was monitored with a food diary, for which participants logged the foods they ate, the amount, and time of day.

Food cravings

Food Craving Questionnaire-State (FCI-S; Cepeda-Benito et al., 2000) is a 15-item valid and reliable measure of state fluctuations in self-reported FC. Responses are scored on a likert scale from 1 to 5 and summed for a total state FC score ranging from 15 to 75. Items are reverse scored, so low scores indicate strong FC experience and high scores indicate low FC experience.

Visual Analog Scale (VAS; (Hill, Weaver, & Blundell, 1991)) requires participants to place a mark on a 100 mm line with one end (100 mm) indicating “extremely” intense craving and the other end (0 mm) representing “not at all.” Participants were instructed to make a mark at the point on the line that corresponded with their current craving experience for the three foods used in this study as food cues (chocolate, donuts, and cookies). The sum of the values for each food was determined at each time point. Scores on the total VAS across the three foods could range from 0 to 300.

Salivation magnitude was measured using a valid and accepted method for detecting FCs using salivation (Monti et al., 1987). Pre-weighed absorbent cotton dental rolls were placed in participants’ mouths before cue exposure tasks, and after they were removed and re-weighed to determine magnitude of salivation during exposure.

Procedures

Overview

In this 2 (diet condition) × 4 (counterbalanced food cue exposure tasks) mixed within subjects factorial design study, participants were recruited and invited to the University of Houston campus for two appointments at least 2 days apart with a 1.5 day diet condition period between appointments. Diet condition served as the between subjects factor with two levels (monotonous diet or normal diet) and food cue exposure task served as the within subjects factor with four levels (neutral, VR, pictures, and real food cues). In the first appointment, participants provided documentation of informed consent, completed the demographic measure and baseline VAS craving and general preference for target foods (i.e., cookies, donuts, chocolate) measure, were randomly assigned to a monotonous diet (MD) or normal diet (ND) condition, and received instructions and supplies for following their assigned diet for 1.5 days. During the second appointment, participants underwent one neutral baseline cue exposure task followed by
دریافت فوری

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات