
A MapReduce scratchpad memory for multi-core cloud computing
applications

Christoforos Kachris a,⇑, Georgios Ch. Sirakoulis a, Dimitrios Soudris b

a Electrical & Computer Engineering Department, Democritus University of Thrace, Greece
b Electrical & Computer Engineering Department, National Technical University of Athens, Greece

a r t i c l e i n f o

Article history:
Available online 2 September 2015

Keywords:
Phoenix MapReduce
Scratchpad memory
Multi-core
Execution time
Energy consumption
Data-centers

a b s t r a c t

Phoenix MapReduce is a multi-core programming framework that is used to automatically parallelize and
schedule programs. This paper presents a novel scratchpad memory architecture that is used accelerate
MapReduce applications by indexing and processing the key/value pairs. The proposed scratchpad mem-
ory scheme can be mapped onto programmable logic or multi-core processors chips as a coprocessor to
accelerate MapReduce applications. The proposed architecture has been implemented in a Zynq FPGA
with two embedded ARM cores. The performance evaluation shows that the proposed scheme can reduce
up to 2.3� the execution time and up to 1.7� the energy consumption.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

As the number of processing cores per chip increases, so does
the need for efficient programming frameworks that can automate
the parallelization of the programs and can provide efficient syn-
chronization and communication mechanisms. Traditional parallel
programming frameworks are based either on shared memory
frameworks (such as the OpenMP framework [1]) or on message
passing protocols (such as MPI [2]). Multi-core programming based
on shared memory frameworks, like OpenMP, is easier to program
and debug than MPI and the code is easier to be maintained. How-
ever, OpenMP requires careful synchronization through locks and
this framework is mostly used for loop parallelization. On the other
hand, MPI that runs mostly on distributed memory architectures
can be used in wider range of applications than OpenMP but it is
harder to debug, it is error-prone due to manual management of
data movement and the performance is limited by the communica-
tion network between the nodes.

In other distributed systems like data centers, the MapReduce
framework is widely used for the efficient and automatic program-
ming, scheduling and distribution of tasks to several processor
nodes. The same notion which is used in the data center MapRe-
duce application, can be used also for the programming of multi-
core systems as in the case of the Phoenix MapReduce framework
[3]. However, the overhead of task scheduling using the

MapReduce framework may reduce the overall performance of
the multi-core systems.

The memory hierarchies of these multi-core systems are based
either on multi-level caches, or directly-addressable local scratch-
pad memories. Caches transparently decide on the placement of
data and use coherence to support communication. However,
caches lack deterministic response time (non-uniform memory
access latency) and make it harder to the software to explicitly
control and optimize data locality.

On the other hand, scratchpad memories offer predictable per-
formance which is required in real-time applications. They also
offer scalable general purpose performance by allowing explicit
control and optimization of data placement and transfers. In the
case of scratchpad, the interprocess communication is explicit
meaning that the software (the application, compiler, or runtime
system) is able to indicate physical placement or transfers. The
main drawback of the scratchpad is that it reduces the program-
ming efficiency, since extra effort must given to the synchroniza-
tion and the consistency of the system.

This paper presents a novel special scratchpad memory archi-
tecture for accelerating applications that are based on the MapRe-
duce framework. The proposed scheme is based on a special
scratchpad memory architecture that is used to store, access and
process the key/value pairs used in the MapReduce framework.
The proposed scratchpad memory can be mapped within any
multi-core platform in order to accelerate the processing of the
applications that are based on the MapReduce framework. It can
be mapped both onto high performance multi-core processors as
Intel Xeon and onto low energy multi-core processors, targeting

http://dx.doi.org/10.1016/j.micpro.2015.08.007
0141-9331/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +30 25410 79547.
E-mail address: ckachris@ee.duth.gr (C. Kachris).

Microprocessors and Microsystems 39 (2015) 599–608

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2015.08.007&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2015.08.007
mailto:ckachris@ee.duth.gr
http://dx.doi.org/10.1016/j.micpro.2015.08.007
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


microservers, such as ARM processors. The proposed scheme can
reduce the execution time of the applications based on the MapRe-
duce framework whether these applications are targeting cloud
computing or any other application based on the MapReduce
framework. The proposed scheme is prototyped on a heteroge-
neous FPGA SoC which combines two (2) ARM A9 processors and
a programmable logic unit, in which the special scratchpad MapRe-
duce memory is implemented. The main advantage of our scheme
is that the proposed MapReduce scratchpad memory can be used
extensively for most of the applications that are based on the
MapReduce framework with a limited number of modifications
on the applications.

Overall the main contributions of this paper are the followings:

� A novel MapReduce scratchpad memory architecture that is
used for faster communication and processing of the key/value
pairs used in the applications based on MapReduce framework.

� Efficient implementation and prototyping of the proposed
architecture in a multi-core FPGA with two embedded ARM
cores.

� Performance evaluation on the proposed scheme in the FPGA
platform using typical cloud applications based on the Phoenix
MapReduce framework showing that the proposed architecture
can provide up to 2.3� speedup to the execution time and 1.7�
lower energy consumption.

The paper is organized in the following way: Section 2 presents
the related work on the use of scratchpad memories in multi-core
systems. Furthermore it presents the related work on mapping of
cloud applications in multi-core embedded processors and the
research on execution of MapReduce applications on FPGAs. Sec-
tion 3 presents the Phoenix MapReduce framework for the efficient
programming of multi-core systems. Section 4 presents the pro-
posed architecture with the special MapReduce scratchpad mem-
ory and the efficient implementation in the FPGA. Section 5
presents the performance evaluation in terms of execution time,
footprint and energy consumption of the proposed scheme. Finally
the conclusions of this work are drawn in Section 6.

2. Related work

In the past, several architectures have been proposed that
include the use of scratchpad memories to accelerate the process-
ing of the systems. Scratchpad memories offer the advantage of
temporary storage of data with uniform memory access latencies
(as opposed to cache memories that provide non-uniform memory
access latencies).

Network processors have adopted the use of scratchpad memo-
ries to store information that needs to be accessed at low latencies
[4]. In the case of packet processing at tens of Gbps, network pro-
cessors cannot afford the non-uniform memory access latencies of
caches. For example, in [5] a low latency scratchpad memory is
proposed to provide fast access to IP lookups for the packet routing.
In [6], a scratchpad memory is proposed that can be used not only
to provide uniform and low latency communication with the pro-
cessors, but it can be also used to easy the programming of multi-
core platform.

Scratchpad memories have been also widely used in the graph-
ics processors. For example, the Cell processor consists of 8 Syner-
gistic Processing Unit (SPU), and each SPU has 256 KB of local
storage that can be accessed directly by other processors though
DMA [7]. The use of local storage instead of cache can provide fas-
ter explicit communication between the processors and the uni-
form low latency memory access that is critical for real-time
graphics processing.

However until now, the use of scratchpad memories was only
limited to the domain of application specific processors. In the
domain of cloud computing, high performance general purpose
processors are used that depend exclusively on cache memory
hierarchies. In the last few years, there are efforts in the research
community to provide specialized processors for different types
of cloud computing applications. For example, Intel has recently
unveiled the design of more energy-efficient servers based on
embedded processors such as Atom, or using customized Pentium
processors for low-end cloud computing applications. The term
that has been widely accepted to describe these servers based on
embedded processors is microservers [8].

In [9], a performance evaluation study has been presented
between high performance server cores (e.g. Intel Xeon processors)
with low power general purpose cores (e.g. Intel Atom processors).
The comparison has shown that low power general purpose cores
can achieve better energy efficiency in the domain of web search
applications. In [10], it was shown that a Fast Array of Wimpy
Nodes (FAWN) that consists of a large number of low-power
embedded processor can achieve high energy efficiency in cluster
computing applications. In [11], it is shown through detailed mea-
surements that the energy-efficiency ratio of the ARM processor
against the Intel workstation is approximately 1.3 in Web server
application. However, none of the multi-core embedded processors
have been specialized for cloud computing applications such as
applications based on MapReduce.

On the other hand, there are also some relevant works that have
been focused on the hardware acceleration of the MapReduce
applications with FPGAs. In [12], it is presented a MapReduce
framework for FPGA but the proposed scheme is especially imple-
mented as a custom design that is used to implement only the
RankBoost application entirely on an FPGA. Both of the Map and
Reduce tasks for the specific application have been mapped to con-
figurable logic and thus a new design has to be implemented for a
different application. In [13] a MapReduce Framework on FPGA
accelerated hardware is presented where a cluster of worker nodes
is designed for MapReduce framework, and each worker node con-
sists of commodity hardware and special hardware. However, once
again each module is specialized for a specific MapReduce
application.

LINQits [14] accelerates a domain-specific query language
called LINQ. LINQ is designed to operate upon data sets and
exposes first-class language constructs for manipulating collec-
tions using query operators. However, existing applications have
to be rewritten with LINQ in order to benefit extensively from
the hardware acceleration which may be tedious and error-
prone. Dryad [15] has been also proposed, which is a general-
purpose distributed execution engine for coarse-grain data-
parallel applications. Dryad runs the application by executing the
vertices of a graph on a set of available computers, communicating
through files, TCP pipes, and shared-memory FIFOs. However,
again the existing applications based on MapReduce need to be
re-written using the Dryad API.

The MapReduce scratchpad memory that is presented in this
paper has the advantage of being a specialized co-processor for
MapReduce applications but it can be utilized by a wide range of
MapReduce applications without major modifications of the origi-
nal MapReduce code.

3. The Phoenix MapReduce framework

One of the most widely used frameworks that are hosted in the
data centers is the MapReduce framework. MapReduce is a pro-
gramming framework for processing and generating large data sets
[16,17]. Users specify a Map function that processes a key/value

600 C. Kachris et al. /Microprocessors and Microsystems 39 (2015) 599–608



http://isiarticles.com/article/74101

