
A modified artificial bee colony algorithm for order acceptance in
two-machine flow shops

Xiuli Wang a,n, Xingzi Xie a, T.C.E. Cheng b

a School of Economics and Management, Nanjing University of Science and Technology, Nanjing 210094, People’s Republic of China
b Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

a r t i c l e i n f o

Article history:

Received 13 October 2011

Accepted 2 June 2012
Available online 13 June 2012

Keywords:

Scheduling

Order acceptance

Artificial bee colony algorithm

Revenue

a b s t r a c t

We consider a two-stage make-to-order production system characterized by limited production

capacity and tight order due dates. We want to make joint decisions on order acceptance and

scheduling to maximize the total net revenue. The problem is computationally intractable. In view of

the fact that artificial bee colony algorithm has been shown to be an effective evolutionary algorithm to

handle combinatorial optimization problems, we first conduct a pilot study of applying the basic

artificial bee colony algorithm to treat our problem. Based on the results of the pilot study and the

problem characteristics, we develop a modified artificial bee colony algorithm. The experimental

results show that the modified artificial bee colony algorithm is able to generate good solutions for

large-scale problem instances.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

In many industries product requirements for customers are
customized and unique. As a result, firms in such industries often
adopt the make-to-order approach to production. Given tight
delivery requirements and limits on production capacity, both
order acceptance decision and production scheduling decision
need to be taken into account. Selecting the right orders to accept
depends on the strategic direction of the firm and many other
considerations. From a problem-oriented perspective, order
acceptance should go along with a careful analysis of capacity
utilization so as to maximize the profit to the firm.

In this paper we consider the problem in a two-stage produc-
tion environment. Each order has distinct product characteristics
and is thus described as a job with different processing times in
stages 1 and 2. The model is motivated by many industries where
the process to produce products typically comprises two con-
secutive stages, e.g., a processing stage followed by a testing
stage. An example is a manufacturer of equipment products that
produces large special-purpose pressure vessels. Each order
typically includes only one equipment product with distinct
characteristics in terms of material, size, and shape, technological
process standards, pressure performance index, and so on. It is
common that processing a product is time-consuming at one
stage but not at the other, i.e., the manufacturing bottleneck stage

is not static but depends on all the processed orders. So schedul-
ing is an important issue. On the other hand, any delay in
delivering an order beyond its due date may incur a penalty cost
to the firm. Operating in such an environment, the firm faces the
problem of order acceptance and scheduling in a two-machine
flowshop to maximize the total net revenue.

The research on taking order acceptance decisions and sche-
duling decisions into account at the same time has received
increasing attention in recent years. The study results mainly
consider order acceptance and production in a single machine
environment with various settings. Slotnick and Morton (1996)
and Ghosh (1997) are regarded as pioneers in studying the order
acceptance and scheduling problem. They consider the order
acceptance and scheduling decisions at the same time so as to
maximize the total revenue. Lewis and Slotnick (2002) extend the
problem to multiple periods for the case where rejecting an order
of a customer will lead to the loss of all the future orders from
that customer. In recent years, research on this topic is further
extended to studying problems with different objectives and in
various settings. In terms of the solution approaches used to
tackle the problem, Slotnick and Morton (2007), Oğuz et al.
(2010), and Nobibon and Leus (2011) develop myopic heuristics
and exact approaches such as branch-and-bound algorithm,
dynamic programming, mixed integer linear programming for-
mulation, and so on. However, the exact algorithms only can solve
the small-scale problem since these problems are NP-hard.
Recently, Rom and Slotnick (2009) and Cesaret et al. (2012)
develop meta-heuristics that apply the techniques of computa-
tional intelligence to tackle the problem. The former team

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/ijpe

Int. J. Production Economics

0925-5273/$ - see front matter & 2012 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ijpe.2012.06.003

n Corresponding author. Tel./fax: þ86 025 84261056.

E-mail address: wangdu0816@163.com (X. Wang).

Int. J. Production Economics 141 (2013) 14–23

www.elsevier.com/locate/ijpe
www.elsevier.com/locate/ijpe
dx.doi.org/10.1016/j.ijpe.2012.06.003
dx.doi.org/10.1016/j.ijpe.2012.06.003
dx.doi.org/10.1016/j.ijpe.2012.06.003
mailto:wangdu0816@163.com
dx.doi.org/10.1016/j.ijpe.2012.06.003


proposes genetic algorithms and the latter team designs a tabu
search algorithm. Both teams show that their meta-heuristics
outperform the myopic heuristics and can obtain optimal or near-
optimal solutions for large-scale problem instances. More details
on this topic can be found in the recent reviews by Keskinocak
and Tayur (2004), and Slotnick (2011).

A special case of our problem where all the orders are accepted
and processed is the two-machine flowshop scheduling problem
to minimize the total weighted tardiness. This case is NP-hard in
strong sense (see, e.g., Pinedo (2002)). For the case of the total
tardiness problem in m-machine flowshops, Onwubolu and
Mutingi (1999) propose a genetic algorithm. For two-machine
flowshops, Schaller (2005) propose a branch-and-bound algo-
rithm to solve small-size problem instances optimally. For the
case of the total weighted tardiness problem in m-machine
flowshops, Parthasarathy and Rajendran (1998), and Rajendran
and Ziegler (2003) propose simulated annealing algorithms and
improving heuristics, respectively. Detail research on the
(weighted) tardiness problem in flowshops can be found in
Vallada et al. (2008).

As the best of our knowledge, only Rom and Slotnick (2009)
and Cesaret et al. (2012) propose meta-heuristics to solve the
order acceptance and scheduling problem. We notice that the
artificial bee colony (ABC) algorithm is a fairly new meta-heuristic
proposed by Karaboga (2005), which is based on simulating the
foraging behavior of honeybee swarms. Using some classic bench-
mark functions, Karaboga and Basturk (2007, 2008, and 2009)
compare the performance of the ABC algorithm with that of other
population-based algorithms such as differential evolution, par-
ticle swarm optimization, and evolutionary algorithm, and so on.
Their research results demonstrate that the ABC algorithm is
comparable to other population-based algorithms and the ABC
algorithm on average shows good performance. Furthermore, Gao
and Liu (2012) propose a modified ABC algorithm and show that it
is superior to the basic ABC algorithm for 28 tested mathematical
benchmark functions. Since its invention in 2005, the ABC algo-
rithm has been applied to deal with practical combinatorial
optimization problems (see, e.g., Singh (2009), Kang et al.
(2009), and Samrat et al. (2010)). Szeto et al. (2011) provide an
enhanced ABC algorithm to treat the capacitated vehicle routing
problem (CVRP). They show that the algorithm performs better
than some of the meta-heuristics (see, e.g., Toth and Vigo (2003),
Berger and Barkoui (2003), and Ai and Kachitvichyanukul (2009)).

Since the problem under study is evidently NP-hard, only
small-size instances can be optimally solved within a reasonable
time. In view of the good performance of the ABC algorithm and
its enhanced version in handling difficult combinatorial optimiza-
tion problems such as the classical CVRP, we design variants of
the ABC algorithm to treat the problem under study.

The paper is organized as follows. In Section 2, we give a
formal description of the problem under study. In Section 3, we
apply the basic ABC algorithm to solve our problem. In Section 4,
we propose a modified ABC algorithm based on investigating the
problem structure and optimal properties. In Section 5, we show
the experimental results of the proposed ABC algorithms. Section
6 concludes our study with a summary.

2. Problem description

We formally describe the problem under study as follows: a
pool of the potential orders, denoted by the set N¼{1,2,y,n}, is
available for processing at time zero. Each order requires to be
processed first on machine 1 and then on machine 2. The
processing times of order i on machines 1 and 2 are ai and bi,
respectively. Each machine can only process one order at a time

and any order can begin processing on machine 2 only after
finishing its processing on machine 1. Associated with order i are
its revenue ri, due date di, and weight wi that represents its unit
time delay penalty beyond di in delivery to the customer.
The decisions are to determine the orders to accept for processing
and how to schedule the accepted orders. The objective is to
maximize the sum of the revenue of each accepted order minus
its weighted tardiness, i.e., the total net revenue. Let xiA{0,1}
be a decision variable. If order i is accepted for processing, then
xi¼1; otherwise xi¼0. Let Ci be the completion time of the
accepted order i on machine 2. The objective is expressed as

max
Pn

i ¼ 1

xiðri�wimaxf0,Ci�digÞ.

3. Artificial bee colony algorithm

ABC algorithm belongs to the category of evolutionary algo-
rithms that is inspired by the intelligent behavior of honeybees in
finding nectar sources around their hives. In an ABC algorithm, the
problem solutions are represented as food sources. The employed
bees and onlookers exploit new food sources from the current
ones. In the exploiting process, they communicate information on
nectar quality between themselves by performing waggle dances.
When a food source is abandoned by an employed bee, the
employed bee becomes a scout and starts to explore randomly a
new food source in the vicinity of the hive. This class of meta-
heuristics has only started to be applied to solve various combi-
natorial optimization problems recently. To the best of our knowl-
edge, there is no research on applying ABC algorithm to tackle
problems that involve scheduling and other operational decisions.

In this section we first discuss how to apply the basic
components of the ABC algorithm to treat our problem. We then
combine these components to develop the basic ABC algorithm
for treating the problem under study. It is evident that there is an
optimal solution for the problem in which the accepted orders are
processed in the same sequence on both machines. Thus, in the
following we only search for solutions in which the processing of
the accepted orders follows a permutation schedule.

3.1. Solution representation

We represent a solution by a vector in which the kth entry is
the order in the kth position of a sequence. If order i does not
appear in the vector, it is not accepted. Thus, a vector of size no
more than n represents both order acceptance and two-machine
sequencing decisions at the same time. For example, for the
problem with the set of orders {1,2,y,10}, a vector v¼(9, 2, 7,
6, 4, 10, 3) represents a problem solution in which orders 1, 5, and
8 are rejected, and the other orders are accepted and processed on
both machines in the same sequence (9, 2, 7, 6, 4, 10, 3).

3.2. Initial solutions

For the problem with n orders, we first randomly generate n

numbers from a uniform distribution on the interval [0, 1]. We
then sort these n numbers in non-decreasing order. We record a
list S¼[k1,k2,y,kn] in which the jth position is the kjth generated
number. For example, when n¼4, we successively and randomly
generate the numbers as 0.11, 0.75, 0.23 and 0.39. Then we create
the list S¼[1, 3, 4, 2] by arranging the jobs in ascending order of
their associated randomly generated number. According to list S,
we generate a solution vector v as follows:

1. Let p¼F (empty set) and h¼1.
2. For ‘¼ 1 to n, do

X. Wang et al. / Int. J. Production Economics 141 (2013) 14–23 15



http://isiarticles.com/article/7530

