A survey on game theory applications in wireless networks

Dimitris E. Charilas, Athanasios D. Panagopoulos

National Technical University of Athens, School of Electrical & Computer Engineering, Mobile Radio Communications Laboratory, Iroon Polytechniou 9, Zografou, 15780 Athens, Greece

ARTICLE INFO

Article history:
Received 22 June 2010
Accepted 30 June 2010
Available online 17 July 2010
Responsible Editor: I.F. Akyildiz

Keywords:
Wireless Networks
Game theory
Payoff
Coalition
Nash equilibrium
Resource allocation
Power control
Call admission control
Routing
Cooperation incentives

ABSTRACT

While the Quality of Service (QoS) offered to users may be enhanced through innovative protocols and new technologies, future trends should take into account the efficiency of resource allocation and network/terminal cooperation as well. Game theory techniques have widely been applied to various engineering design problems in which the action of one component has impact on (and perhaps conflicts with) that of any other component. Therefore, game formulations are used, and a stable solution for the players is obtained through the concept of equilibrium. This survey collects applications of game theory in wireless networking and presents them in a layered perspective, emphasizing on which fields game theory could be effectively applied. To this end, several games are modeled and their key features are exposed. © 2010 Elsevier B.V. All rights reserved.

1. Introduction

Game theory is a discipline aiming to model situations in which decision makers have to make specific actions that have mutual – possibly conflicting – consequences [1]. It has been used primarily in economics, in order to model competition between companies. In the context of wireless networks, game theory may be used as a tool for forming cooperation schemes among entities such as nodes, terminals or network providers. During the last years, game theory has also been applied to networking, in most cases to solve routing and resource allocation problems in a competitive environment. Recently, its application was introduced in wireless communications: the decision makers in the game are rational users or networks operators who control their communication devices.

These devices have to cope with a limited transmission resource (i.e., the radio spectrum) that imposes a conflict of interests [2]. In this article we describe how game-theoretic frameworks can be set up to address several issues in wireless networks and survey recent advances in this area, highlighting applicability to problems such as power control, spectrum allocation call admission control, medium access control and routing, among others. Emphasis is placed on which type of game is most appropriate for each case, as well as on which element should be considered in the development of utility functions; to this end several examples of such functions are exposed.

2. Game theory basics

2.1. Basic concepts

This section demonstrates the fundamentals of game theory. For further details the reader is prompted at [1,3,4]. Game theory is related to the actions of decision
The Nash equilibrium is a solution concept of a game involving two or more players, in which no player has anything to gain by changing only his own strategy unilaterally. If each player has chosen a strategy and no player can benefit by changing his strategy while the other players keep theirs unchanged, then the current set of strategy choices and the corresponding payoffs constitute a Nash equilibrium. Some games can be solved by iterated dominance, which systematically rules out strategy profiles. A pure strategy \(s_i \) is strictly dominated for player \(i \) if there exists \(s'_i \in S_i \) such that \(u_i(s'_i, s_{-i}) > u_i(s_i, s_{-i}) \) for all \(s_{-i} \in S_{-i} \). It is customary to denote by \(s_{-i} \) the collective strategies of all players except player \(i \).

2.3. Mixed strategies

When a player makes a decision, he can use either a pure or a mixed strategy. If the actions of the player are deterministic, he is considered to use a pure strategy. If probability distributions are defined to describe the actions of the player, a mixed strategy is used. We denote a mixed strategy available to player \(i \) as \(\sigma_i \). We denote by \(\pi_i(s_i) \) the probability that \(\sigma_i \) assigns to \(s_i \). Clearly, \(\sum_{s_i \in S_i} \sigma_i(s_i) = 1 \). Of course, a pure strategy \(s_i \) is a degenerate case of a mixed strategy \(\sigma_i \), where \(\sigma_i(s_i) = 1 \). The space of player \(i \) ’s mixed strategies is \(\Sigma_i \). As before, a mixed strategy profile \(\sigma = (\sigma_1, \sigma_2, \ldots, \sigma_N) \) and the Cartesian product of the \(\Sigma_i \) forms the mixed strategy space \(\Sigma \).

2.4. Repeated games

In strategic or static games, the players make their decisions simultaneously at the beginning of the game. On the contrary, the model of an extensive game defines the possible orders of the events. The players can make decisions during the game and they can react to other players’ decisions. Extensive games can be finite or infinite. A class of extensive games is repeated games, in which a game is played numerous times and the players can observe the outcome of the previous game before attending the next repetition.

3. Game theory in wireless networks: a layered perspective

As stated in the introduction of the present article, the author’s intention is to collect a wide spectrum of game theory applications in wireless networks. In order to provide a coherent presentation and point out the various fields of application, the latter have been categorized under corresponding OSI Layers. The adopted layered perspective

Table 1

<table>
<thead>
<tr>
<th>Game component</th>
<th>Entities, processes or elements of wireless networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Players</td>
<td>Network nodes, service providers or customers</td>
</tr>
<tr>
<td>Resources</td>
<td>All kinds of resources needed by nodes to communicate successfully (spectrum, power, bandwidth, etc.), income</td>
</tr>
<tr>
<td>Strategies</td>
<td>A decision regarding a certain action of the player, depending on the application field (forward packet, set power level, accept new call, etc.)</td>
</tr>
<tr>
<td>Payoffs</td>
<td>Estimated by utility functions, based on QoS merits (delay, throughput, SNR, etc.)</td>
</tr>
</tbody>
</table>
دریافت فوری
متن کامل مقاله
امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات