
A software model to prototype ant colony optimization algorithms

Roberto Fernandes Tavares Neto *, Moacir Godinho Filho
Industrial Engineering Department, Federal University of São Carlos (UFSCar), Rodovia Washington Luis, Km 235, São Carlos – SP, Brazil

a r t i c l e i n f o

Keywords:
Ant colony system
Software model
ACS
AS
MMAS

a b s t r a c t

The study of multi-agent systems usually begins by implementing a base-algorithm, which is changed as
required by the aim of the research. In this context, carrying out different algorithms, which have already
been established, is not a trivial task as it requires implementing these algorithms. This paper presents a
software model that allows one to prototype variations of the Ant Colony Optimization metaheuristic.
This model can be used to avoid implementations in duplicity, allowing, with less effort, the generation
of different algorithms to be used on the same problem. Results shown that, specially for more elaborated
algorithms, the adoption of the proposed software model reduce significantly the coding effort required.

Crown Copyright � 2010 Published by Elsevier Ltd. All rights reserved.

1. Introduction

The Ant System (AS) algorithm was introduced in 1991 by Col-
orni et al. Since then, a lot of research has been done by applying
ants’ behavior to classic and new problems reported in the litera-
ture. Gambardella and Dorigo (1996) introduced the Ant Colony
System (ACS) algorithm improving the original AS algorithm and
producing better results to solve combinatory problems.

Several researchers have adapted the heuristics proposed by
Gambardella and Dorigo (1996) to specific problems. ACS was first
used to solve the classical Traveling Salesman Problem (TSP), sym-
metric and asymmetric, (Dorigo, Maniezzo, & Colorni, 1996;
Gambardella & Dorigo, 1996). After that, several other applications
were developed, such as the Sequential Ordering Problem – SOP,
(Gambardella & Dorigo, 2000), the Capacitated Vehicle Routing
Problem – CVRP, originally solved by Bullnheimer, Hartl, and
Strauss (1997), scheduling problems (Bauer, Bullnheimer, Harlt, &
Strauss, 2000; Blum, 2002; Stützle & Hoos, 2000) among others.
For more information, Dorigo and Stutzle (2004) present a sample
of more than 60 applications of AS and ACS.

According to Stutzle and Linke (2000), all of this research is
based on the same core algorithm with small modifications incor-
porated in order to include the new characteristics, maintaining
the basic functions of the ant colony algorithm. However, for each
implementation, a different computational tool is used, so it is
common to find mentions of codes written in C, C++, JAVA or even
using mathematical processing tools such as Matlab, depending on
the availability of resources and technical preferences of each
researcher. This lack of standardization in code structure is a

problem usually found for researchers who want to apply and to
compare different algorithms.

Within this context, this paper proposes and implements a soft-
ware model that facilitates information exchange between
researchers who use the AS algorithm and its variations. Analyzing
the necessary changes in the original core of the AS for the imple-
mentation of the different heuristics, it is possible to establish a
relationship between them and their classification. Using the pro-
posed software model, the creation of new algorithms from the ini-
tial AS core is made easier, since all the support functions and the
basic behavior is already validated. At the same time, implement-
ing different algorithms with the same input data representation
model facilitates the evaluation of the use of techniques that are al-
ready available in different classes of problems.

Similar studies can be found in the literature, for example
Andreatta, Carvalho, and Ribeiro (2002), who present a software
model for the creation of local search heuristics; Laguna (1997),
who present a software for optimization with genetic algorithms;
and the projects ‘‘Genetic Algorithms Framework” (GA-FORK,
2008) and ‘‘COIN” (Hunsaker, 2008) which provide respectively a
multiplatform software model to solve problems using genetic
algorithms and a computational infrastructure for operational re-
search problems. Nonetheless, no software model applied to design
prototypes of systems based on the ant colony metaheuristic was
found in the literature.

In order to achieve the proposed goals, the algorithms Ant-Cy-
cle, Ant-Density, and Ant-Quantity, proposed by Colorni, Dorigo,
and Maniezzo (1991) and Dorigo et al. (1996), were used. The re-
sults obtained from surveys (Dorigo & Blum, 2005; Stovba, 2005)
will be the basis to show how the system proposed can be used
for the implementation of variations of the single colony AS. In
addition, using the paper of Ellabib, Calamai, and Basir (2007) we
demonstrate how to implement AS multiple colony algorithms
using the software model presented. Results show that when the

0957-4174/$ - see front matter Crown Copyright � 2010 Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2010.06.054

* Corresponding author. Tel.: +55 16 3351 9540; fax: +55 16 3351 8240.
E-mail addresses: tavares@dep.ufscar.br (R.F. Tavares Neto), moacir@dep.ufscar.

br (M. Godinho Filho).

Expert Systems with Applications 38 (2011) 249–259

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://dx.doi.org/10.1016/j.eswa.2010.06.054
mailto:tavares@dep.ufscar.br
mailto:moacir@dep.ufscar.br
mailto:moacir@dep.ufscar.br
http://dx.doi.org/10.1016/j.eswa.2010.06.054
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


proposed model is used, the implementation effort could be re-
duced significantly. As an example, the implementation of the
Max–Min Ant System (Stützle & Hoos, 2000) required only three
simple methods to be written while without the software model,
40 methods were necessary to be written.

This article is structured as follows; Section 2 presents the def-
inition of the AS algorithm, and its major characteristics and vari-
ations. Section 3 presents the software model proposed. Section 4
presents the project choices for the implementation of the struc-
ture introduced, the necessary changes for the implementation of
some algorithms described in Section 2, and also the results of a
set of tests to validate the implemented procedures. The last sec-
tion presents some final considerations and ideas for further
research.

2. The ant colony optimization algorithm

The ant colony optimization algorithm is based on the concept
of multi-agent systems. As agent, this paper will consider the
definition given by Frankling and Graesser (1996): ‘‘a system
situated within and a part of an environment that senses that environ-
ment and acts on it, over time, in pursuit of its own agenda and so as
to effect what it senses in the future”. In ant colony algorithms, the
agents’ environment is represented by a graph consisting of differ-
ent numerical information: a fixed one, established with the defi-
nition of the problem, and a variable one, which is modified
within the algorithm execution. They do not depend on each other
and are related only to the arcs connecting the nodes i and j in the
graph. Some examples of fixed information are the distance be-
tween cities (for modeling problems such as the TSP) and time re-
quired for operations (for scheduling problems), among others. The
modified information along the algorithm is related to ‘‘artificial
pheromones” values making an analogy with the pheromones
emitted by real ants while moving.

According to Dorigo et al. (1996), an artificial ant can be defined
as a computational agent with the following characteristics:

1. It exists in an environment represented mathematically as a
graph: an ant always occupies a node in a graph which rep-
resents a search space. This node is called nf.

2. It has an initial state.
3. Although it cannot sense the whole graph, it can collect two

kinds of information about the neighborhood: firstly, the
weight of each trail linked to nf; and secondly, the character-
istics of each pheromone deposited on this trail by other
ants of the same colony.

4. Moves toward a trail cij that connects nodes i and j of the
graph.

5. Also, it can alter the pheromones of the trail cij, in an opera-
tions often called on literature as ‘‘deposit of pheromone
levels”.

6. It can sense the pheromone levels of all cij trails that con-
nects a node i.

7. It can determine a set of ‘‘prohibited” trails.
8. It presents a pseudo-random behavior enabling the choice

among the various possible trails.
9. This choice can be (and usually is) influenced by the level of

pheromone.
10. It can move from node i to node j.

Additionally, if the ant has more information about the prob-
lem, such as the number of elements expected in the final solution,
the computational implementation can be simplified. In this case,
there is a computational gain allocating the memory of the vector
representing a fixed size response instead of recalculating its size

in every step of building an individual response. The knowledge
of the problems characteristics also enables the implementation
of a set more sophisticated rules used to determine the next move-
ment (for example, see Bauer et al., 2000).

The behavior of the AS, as shown in Chart 1, is based on the con-
cept of emerging intelligence: the problem is not solved directly by
one or two agents, but, instead, it is a result of the behavior of the
various interactions between the agents and their environment.
This can occur by concentrating efforts to solve the problem within
the search space, where it is supposed to have high quality solu-
tions. According to Dorigo, Bonabeau, and Theraulaz (2000), real
ants use pheromones for communication. This mechanism is the
following: while a single ant moves randomly, an ant which finds
a pheromone trail has a higher probability to follow this trail. In
addition, when this ant chooses this trail, it deposits more phero-
mone into the trail which increases the probability of another
ant follow the same trail. According to Blum and Dorigo (2004a),
algorithms based on ant system try to imitate this behavior creat-
ing artificial pheromones which are continually updated to in-
crease the probability of an ant to choose the best trail.

In Chart 1, there are three fundamental elements for algorithms
based on ant colonies (shown in steps 5, 6, and 8 respectively):

1. Probability for an ant to choose a trail (shown in the literature
as ‘‘transition rule”, shown in step 5).

2. Pheromone local trail update when building the solutions (step
6).

3. Pheromone global update rule, which has an evaporation rule
(negative reinforcement) and a pheromone deposit rule to be
applied after building an individual solution (positive reinforce-
ment, step 8).

As stated before, pheromones can be updated twice: firstly dur-
ing the movement of the ants (before finalizing the solution build-
ing), and later, after all ants have built their solutions.

It is worth mentioning that the behavior predicted by steps 6
and 8 in Chart 1 is crucial for the whole agent communication pro-
cess since there is no direct communication, but a synergetic com-
munication used for coordinating the ants’ actions. This indirect
communication occurs by incrementing and decrementing the
pheromone levels, as shown in Fig. 1. This figure shows two routes
that connects two nodes (‘‘origin and destination”). At first, the
pheromone level of both routes (represented by the length of the
corresponding arrows) is equalized (Fig. 1a). In this case, there is
an equal chance of choice between the two routes. Therefore, the
same number of ants will move through them. Nevertheless, it
takes longer for ants that choose the longest route to return, caus-
ing more evaporation of the pheromone they deposited. Generally,
the pheromone deposit rules are designed to penalize the positive
reinforcement in longer routes. In both cases, the pheromone level
of the longer routes decreases in relation to the pheromone level of
the shorter trail (Fig. 1b). After some iterations, the shorter route

Chart 1. Basic structure of the AS algorithm (source: Dorigo and Gambardella,
1997).

250 R.F. Tavares Neto, M. Godinho Filho / Expert Systems with Applications 38 (2011) 249–259



http://isiarticles.com/article/7651

