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a b s t r a c t

An ant colony optimization (ACO) based stereoscopic particle matching algorithm has been developed for
three-dimensional (3-D) particle tracking velocimetry (PTV). In a stereoscopic particle pairing process,
each individual particle in the left camera frame should be uniquely paired with the most probable
correct partner in the right camera frame or vice-versa for evaluating the exact 3-D coordinate of the
particles. In the present work, a new algorithm based on an ant colony optimization has been proposed
for this stereoscopic particle matching. The algorithm is tested with various standard 3-D particle image
velocimetry (PIV) images of the Visualization Society of Japan (VSJ) and the matching results show that
the performance of the stereoscopic particle pairing is improved by applying proposed ACO techniques
in comparison to the conventional nearest-neighbor particle pairing method of 3-D stereoscopic PTV.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Hot-wire anemometry is one of the oldest techniques for
the measurement of the quantitative information of the flow
field. This technique is intrusive and was partially replaced
and complemented by laser doppler anemometry (LDA), a non-
intrusive optical technique. Both techniques offer the possibility
to measure all three components of the velocity vector but only at
one or several locations. Though these methods still retain some
important positions in the field of experimental mechanics, in
recent years, particle image velocimetry (PIV) has been widely
accepted as a reliablewhole-field velocitymeasurement technique
in every branch of fluid engineering [1]. The recent mode of PIV is
3-D and the main trend of the current 3-D PIV is a stereoscopic
extension of a standard 2-D PIV system, using a finite-thickness
laser light sheet and two stereoscopic CCD cameras in Scheimpflug
optical arrangement [2]. However, the measurement target of this
type of 3-D PIV system is limited to 3-D flows with comparatively
small out-of-plane velocity componentswith respect to the two in-
plane components [3]. Under these circumstances, the 3-D particle
tracking velocimetry (PTV) [4,5] is probably a more promising
technique than the stereoscopic 3-D PIV using a finite-thickness
laser light sheet for the full-volume 3-D flow measurements
because the depth velocity component is also as well resolved as
other components.
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The 3-D PTV is composed of two successive steps of particle
pairing [6] as shown in Fig. 1. The first one is the co-instantaneous
spatio-differential (parallactic) particle pairing, in which the
particles viewed by two (or more) stereoscopic cameras with
different viewing angles have to be correctly paired at every
synchronized time stage. This is necessary for computing the
3-D coordinates of individual particles. The second one is the time-
differential particle pairing, in which the particles with computed
3-D coordinates have to be correctly paired with those at the next
time step. Of these two steps of particle pairing, the second one
is relatively rich in methodology because many of the known two
dimensional (2-D) time-differential tracking algorithms [7–11] can
be extended into 3-D tracking without any additional complexity.
However, the first step, i.e., the spatio-differential particle pairing
process encounters difficulties and possesses some challenges
when accurate estimation of 3-D particle coordinates is required.
The main issue comes from the fact that two neighbor particles
in the camera images are not necessarily located close to each
other in real 3-D space. In this context, the most commonly used
method for this spatial particle pairing is the epipolar line nearest
neighbor analysis [12]. But this method does not produce a high
recovery ratio of 3-D particles in densely seeded particle images.
The principal reason for this is the fact that in a volume with
densely seeded particles, there arise plenty of epipolar lines with
which the nearest neighbor particles do not make correct particle
pairs. Another difficulty in stereoscopic particle pairing arises from
the fact that the algorithm in principle is not allowed to profit from
the information of the neighbor particles as in the case of the time-
differential particle pairing. In this respect, the use of a third or
even a fourth stereoscopic camera avoids the ambiguous pairing
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Fig. 1. Typical flow chart of 3-D particle tracking velocimetry.

and increases the recovery ratio of 3-D particles. But the use of
an additional camera adds another complexity in the process of
particle pairing in terms of the requirement for more expensive
and sophisticated hardware. Besides, the numbers of particles
viewed by three or more cameras are also decreased as each
camera has its own limited view area. What is then needed is a
new powerful algorithmwhich gives better particle pairing results
even with a two camera arrangement.

With such a view, some advanced computational techniques for
the stereoscopic particle matching problem have been reported
by some authors using only a two camera arrangement. Grant
et al. [13] suggested a Hopfield neural network based computa-
tional strategy. This is an interesting attempt with a concept of the
minimization of Lyapunov energy function, but in their approach
the camera configuration is restricted in such a way that the object
plane, lens plane and image plane all need to be parallel to each
other, and the lens of the cameras must be in the same plane. In
this kind of translational configuration, there is not enough flexi-
bility to resolve the depth. Moreover, the Hopfield neural network
approach is not a good choice for the particle tracking velocimetry
when the particle number exceeds 150 particles per frame [14,15].
Similarly, Doh et al. [16] applied the genetic algorithm (GA) for 3-D
stereoscopic particle tracking velocimetry with successful results,
but their strategy was a simultaneous optimization of the spatial
and temporal particle pairing between two time-differential sets
of two (or more realistically three) stereoscopic particle images.
The results of their flow analysis seem interesting but the applica-
bility of the genetic algorithm for simultaneous two-stage particle
pairing is rather obscured. Further, the neural network based on
the self-organizing maps (SOM) method [17] and cellular neural
network (CNN) method [18] using two camera arrangement was
applied for the stereo PTV. In the case of SOM, the algorithmworks
well with larger number of particles but the computation of the
initial distance parameter is difficult and the stereo PTV results are
sensitive to this computation parameter. If the value of this initial
distance parameter is large, the algorithmwill take a large amount
of time to convergewhereas if the value is small then the algorithm
may not converge properly and there may be an error in particle
pairing results. On the other hand, the CNN method is another in-
teresting attempt with a concept of the minimization of Lyapunov
energy function, but in order to get reasonable matching results,
the energy functionmust be composed of four object functions rep-
resenting the physical constraints of the flow. This complicates the
computation processwith an additional problemof theweight bal-
ance of the multiple object functions.

From such a background, the present authors have been trying
to establish a newparticle pairing strategy for stereoscopic particle
images obtained from a two-camera arrangement. The point of
their new strategy is the use of ACO based algorithms applied to
the epipolar line nearest-neighbor analysis. The principle of the
ACO algorithm was originally proposed by Dorigo et al. [19] to

solve the traveling salesperson problem (TSP). This is a kind of
algorithm for optimal solution problems and seems attractive for
the particle tracking in the sense that the method uses a concept
of group intelligence. In this regard, the ACO algorithm has already
been applied by Takagi [20] and two of the present authors [21]
with successful results for the time-differential particle images.
Although the epipolar line particle pairing between spatio-
differential particle images is not based on the same type of image
disparity as in the time-differential images, the ACO algorithm can
also be an effective particle pairing strategy for the former case,
because the group intelligence principle of ACO could work well
for minimizing the mismatch of the particle projection point and
the relevant epipolar line. Bearing this in mind, in this research,
an ACO algorithm has been applied to the epipolar constraint
analysis in the stereoscopic particle pairing. The accuracy of the
current spatial particle pairing results is examined by using the PIV
standard images [22].

2. Ant colony optimization

2.1. Basic principle

Ant algorithms were inspired by the observation of real ant
colonies. Ants are social insects that live in colonies and their
behavior is directed more to the survival of the colony as a whole
than to that of a single individual component of the colony. An
important and interesting behavior of ant colonies is their foraging
behavior, and, in particular, how ants can find shortest paths
between food sources and their nest. The ant colony optimization
(ACO) is an algorithm that imitates the behavior of a group of
ants searching for food and bringing it back to their nest [19].
Their food collection is a co-operative work of the ants going on
a scouting mission and those collecting foods. While walking from
food sources to the nest and vice-versa, ants deposit on the ground
a substance called pheromone, forming in this way a pheromone
trail. The pheromone trail allows the ants to find their way back to
the food source (or to the nest). Also, it can be used by other ants to
find the location of the food sources found by their nestmates. Ants
can smell pheromone and, when choosing their way, they tend to
choose paths marked by strong pheromone concentrations. The
routes on which the ants do not go often lose their pheromone
by evaporation and are gradually abandoned. Only those routes
which more ants follow survive. In this way, when more paths are
available from the nest to a food source, a colony of ants is able to
exploit the pheromone trails left by the individual ants to discover
the shortest path from the nest to the food source and back while
discarding longer routes.

Individual ants conduct themselves according to two simple
rules: (1) they travel at a constant speed while marking their
route with pheromone; (2) they make their way on the routes
with stronger pheromone. However if the ants are viewed as a
group, they also behave as if there were intelligence in the mass
of ants. And this sort of group intelligence can be described as the
essence of the ant colony optimization. In order to reproduce such
behaviors (individuals as well as group behaviors) of ants in a real
life ACO algorithm, at first, a number of agents imitating individual
ants are prepared for work. These ant agents act independently
in the space of the problem to be solved. Then they travel from
different points in the space searching for the solution which they
try to find out by combining two kinds of information. The first one
is the short-sighted information obtained from direct views of the
problem and the second one is the global information drawn from
the group activities of ant agents, i.e., the pheromone amount.

The traveling salesman problem (TSP) is an example of a typical
problem to which the ACO was applied [19]. Given a collection of
cities and the cost of travel between each pair of them, the TSP is a
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