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a b s t r a c t 

The field of wireless sensor networks (WSNs), embedded systems with sensing and networking capabil- 

ity, has now matured after a decade-long research effort and technological advances in electronics and 

networked systems. An important remaining challenge now is to extract meaningful information from 

the ever-increasing amount of sensor data collected by WSNs. In particular, there is strong interest in 

algorithms capable of automatic detection of patterns, events or other out-of-the order, anomalous sys- 

tem behavior. Data anomalies may indicate states of the system that require further analysis or prompt 

actions. Traditionally, anomaly detection techniques are executed in a central processing facility, which 

requires the collection of all measurement data at a central location, an obvious limitation for WSNs 

due to the high data communication costs involved. In this paper we explore the extent by which one 

may depart from this classical centralized paradigm, looking at decentralized anomaly detection based 

on unsupervised machine learning. Our aim is to detect anomalies at the sensor nodes, as opposed to 

centrally, to reduce energy and spectrum consumption. We study the information gain coming from ag- 

gregate neighborhood data, in comparison to performing simple, in-node anomaly detection. We eval- 

uate the effects of neighborhood size and spatio-temporal correlation on the performance of our new 

neighborhood-based approach using a range of real-world network deployments and datasets. We find 

the conditions that make neighborhood data fusion advantageous, identifying also the cases in which this 

approach does not lead to detectable improvements. Improvements are linked to the diffusive properties 

of data (spatio-temporal correlations) but also to the type of sensors, anomalies and network topological 

features. Overall, when a dataset stems from a similar mixture of diffusive processes precision tends to 

benefit, particularly in terms of recall. Our work paves the way towards understanding how distributed 

data fusion methods may help managing the complexity of wireless sensor networks, for instance in 

massive Internet of Things scenarios. 

© 2016 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 

1. Introduction 

In the last decade, the vision of an internet of things (IoT) has 

rapidly become reality. Recent advances in technology, together 

with ever-decaying prices of electronic components, have made 

networked embedded systems ubiquitous in our life. These devices 

are in most cases endowed with sensing, actuating and networking 

capabilities and are often connected to the Internet. Noteworthy 
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applications of these systems can be found, for instance, in home 

automation, automated transportation, or large scale environmen- 

tal data collection [1] . 

While at present white goods, smart cities and buildings are be- 

ing equipped with IoT technology [2] , one of the earliest IoT related 

systems were (and are) wireless sensor networks (WSNs), with 

typical applications in environmental monitoring [3] and tracking 

of mobile agents [4] . Such applications usually require numerous 

sensor nodes to be deployed in remote locations. To make such 

systems affordable, costs are saved by reducing the quality of the 

sensors and the hardware resources available on each node (such 
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as battery and computing elements), while the overall measure- 

ment quality of the networked system is often ensured by a high 

level of redundancy in measurements. For this reason, the past 

decade of WSN research focused mostly on optimizing resource us- 

age [5–7] . 

With this body of research maturing, and the sensor technology 

advancing, the attention of the field is now shifting towards appli- 

cations [8–11] . However, these harbor some hard theoretical prob- 

lems related to the envisioned scale of the network deployments, 

such as the analysis of large amounts of data, stemming from, e.g., 

sensor networks deployed in large outdoor areas or from the many 

networked appliances in a smart home. The collected data is often 

analyzed in order to find specific information at a given point in 

time that is meaningful for the application to act upon. For exam- 

ple, seismic data could be analyzed for patterns that denote seis- 

mic activity [12] , body sensor data can be analyzed to provide early 

health warnings [13] , or vibration data could be mined for events 

that potentially point to a failing machine [14] . Often, such pat- 

terns or events are out of the ordinary or anomalous. 

Anomaly detection can be defined as the detection of events, 

behaviors or patterns that are unexpected relative to a concept of 

what is normal [15] . A typical example is the detection of fraud 

in, e.g., credit card transactions or the detection of identity falsi- 

fication [16] . One can also think of climate events, such as heat 

waves and droughts. What defines climate events as anomalous 

depends on multiple variables, such as location, and the proper 

context (drought in the Sahara desert, for instance, is not anoma- 

lous) [17] . Anomaly detection approaches are also used to detect 

intrusions in information systems, ever more relevant in present- 

day cloud computing [18] . 

Anomaly detection approaches is popular in applications with 

large central storage and processing facilities, such as those em- 

ployed to process big data [19] . However, their application to 

lightweight systems, such as WSNs, is still limited due to the se- 

vere resource limitations posed by these systems. Limited memory 

and the high communication costs, for example, preclude the sce- 

nario where all WSN nodes send all information to a central fa- 

cility for storage and processing [20] . To address these problems, 

one must either adapt to the aforementioned limitations the ap- 

proaches available in the literature (which however are devised, 

in general, for general-purpose computers), or develop new solu- 

tions. Moreover, due to the lack of contextual information that is 

often not present at design time, such methods need self-adaptive 

mechanisms or dynamic model fitting approaches, such as machine 

learning techniques, to allow them to operate on data of different, 

unpredictable environmental conditions. Such learned models can 

be bootstrapped with the little information available during design 

time, or be learned completely unsupervised during deployment. 

The decentralized nature of WSN results in measurements 

taken in different points in space, over time. Due to the decreasing 

cost of the hardware, more nodes can be deployed which results 

in higher quality data through redundancy. However, the measure- 

ments can contain anomalies that occur with respect to local sen- 

sors, to neighborhood information or to global information. Using 

anomaly detection techniques a node can, for instance, generate 

an initial estimate of the reliability of measurements through ag- 

gregation of local spatial neighborhood information, thus reducing 

the amount of data sent to a central processing facility and allow- 

ing the generation of a local and timely response to anomalies. 

The central processing facility could then use all the aggregated 

data to provide a second detection or estimation stage to improve 

anomaly detection accuracy, using its abundant storage and com- 

puting power resources. 

In this paper, we address the following question: Can the local 

detection of anomalies be improved (in terms of precision or re- 

call) by combining data from groups of spatially co-located sensor 

nodes? To answer this question, we devise a novel anomaly detec- 

tion system based on a decentralized unsupervised online learning 

scheme, which incorporates local neighborhood information. We 

extensively evaluate this approach over a broad range of real-world 

network deployments and datasets from different domains. Then, 

in order to show the effect of the neighborhood information on 

the anomaly detection, we compare the performance of the frame- 

work with and without the use of neighborhood information. 

The remainder of this paper is structured as follows: The next 

section provides a short summary of the literature related to our 

work. Section 3 presents our new anomaly detection approach and 

describes our experimental setup, while Section 4 shows and dis- 

cusses our experimental results. Finally, Section 5 provides our 

conclusions. 

2. Related work 

Anomaly detection is often used in applications such as fraud 

detection [16] , network intrusion detection [21] , data centers [22] , 

or airline safety [23] . Historical (or, a priori ) data is used to con- 

struct a model of the normal behavior of the process (or system) 

under consideration, and newly arriving data is tested for fitting 

with the model. Patterns or behaviors that do not fit are then clas- 

sified as anomalous, as fraudulent, as faulty, or simply as events 

that require further human analysis. 

Within the research related to networked embedded devices 

(such as WSNs), one can often see a similar approach: Data is col- 

lected at a central point, where it is analyzed to find the anomalies. 

This allows, for instance, the use of multiple classifiers in an en- 

semble, each of which can excel in different aspects of the complex 

dynamics of the system under monitoring [24] . Furthermore, it al- 

lows complex transforms of multivariate time-series [25] or hu- 

man reinforcement as additional detection method in, e.g., a large 

oceanic dataset [26] . 

However, central techniques have several drawbacks. The no- 

table ones in the context of WSN systems have mainly to do with 

their resource usage. The wireless communication scheme also has 

inherent drawbacks, such as packet loss, while many detection 

techniques often assume reliable periodic data and, thus, have to 

deal with delayed packets due to retransmissions [27] . Further- 

more, models learned from previously acquired data may not be 

suitable at any given time, and thus may require frequent model 

updates. Depending on the detection method used, these updates 

may be intrinsic and lightweight, or may require the reprocessing 

of all the acquired data [28] . 

To overcome some of these drawbacks, hybrid approaches cre- 

ate and update models offline that are suitable for online use in 

limited-resource environments. Such approaches offload the learn- 

ing to a more powerful node and, thus, allow more complicated 

models to be learned. For example, time series are often modeled 

using an autoregressive moving average (ARMA) model [29] . Al- 

though, the model parameters could be estimated online, offline 

parameter estimation ensures that the model represents normal 

data, and leaves valuable computing cycles to run additional de- 

tection and classification techniques on the nodes. More complex 

models can only be trained offline due to resource limitations. For 

instance, echo state networks, a form of recurrent neural networks, 

can model complex time series with historical data offline. The 

resulting neural network can be used in WSN nodes to classify 

anomalies [30] . One can also think of another type of hybrid ap- 

proach, where resource-limited nodes only provide basic anomaly 

detection methods to provide early warnings, while more complex 

detection methods are executed at a base station. This approach is 

applied, for example, in electronic health care, where WSN nodes 

provide early warnings based on sliding window features (such as 

thresholds of the mean), while a base station performs complex 
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