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a b s t r a c t

Cage-based space deformations are often used to edit and animate images and geometric models. The
deformations of the cage are easily transferred to the model by recomputing fixed convex combinations
of the vertices of the cage, the control points. In current cage-based schemes the configuration of edges
and facets between these control points affects the resulting deformations. In this paper we present a
family of similar schemes that includes some of the current techniques, but also new schemes that
depend only on the positions of the control points. We prove that these methods afford a solution under
fairly general conditions and result in an easy and flexible way to deform objects using freely placed
control points, with the necessary conditions of positivity and continuity.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Techniques to deform three dimensional models are important
in computer graphics. They can be used as modelling tools, to
animate models, or within simulations. Additionally, some appli-
cations may require the deformation to satisfy other restrictions,
like clamped portions of the model, or volume preservation.

A large number of methods currently in use and in the literature
follow the Cage paradigm, whereby the model is surrounded by a
coarse polyhedral cage, and the vertices of that cage—the control
vertices—are used as handles to control the deformations. To
describe how the space inside (and around) the cage deforms as the
vertices of the cage move, some form of generalised barycentric
coordinates with respect to the control vertices is used. These
schemes give each point a set of coordinates that depend on the
relative position of the point itself and the control points. Given
such a coordinate system, when the cage is deformed, it is just a
matter of computing the new positions of the points with the given
coordinates to retrieve the deformed model. If these coordinates are
smooth, the induced deformations will also be smooth. The
advantage, of course, is that the user (or the simulation or optimi-
sation code) must only concernwith a small number of handles (the
control points) as opposed to a very large number of points (the
vertices of the model). This paradigm is simple, elegant and effi-
ciently deforms the models. However, some cage-free deformation
techniques have been introduced recently. They provide more

flexibility in the choice of deformation handles—which may not be
connected—and provide powerful tools to make the deformation
process more versatile and intuitive.

In our research, we are especially interested in the deformation of
soft tissues in medical or biological models. These models represent
organs and tissues which are soft and lack an internal rigid structure.
They are elastic but incompressible. In these cases an obvious guiding
structure to help in devising a cage seldom exists, making schemes
that do not rely on connectivity more natural to use.

In this paper we propose some new methods to compute a set
of generalised barycentric coordinates which are cage-free and
depend only on the positions of the deformation handles. The
main contributions we present here are:

� The definition of a formal framework, the Celestial Coordinates,
in which many of the existing schemes can be described.

� Two new Celestial Coordinate schemes that depend only on the
positions of the control points, and not on their connectivity.

Section 2 discusses the previous work in this area. Then,
Section 3 defines the Celestial Coordinates family and Sections
4 and 5 derive two new systems that belong to this family. Finally,
Sections 6–8 present results to evaluate these new schemes and
our plans for future work along these lines.

2. Previous work

There is a lot of bibliography proposing different types of
Generalised Barycentric Coordinate (GBC) systems so the defor-
mations of the control points have the desired properties of
smoothness, locality and real-time responsiveness.
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The best known examples are the classical Barycentric Coordinates,
defined by Möbius in 1827, which restrict the cage to be a simplex.
More recently, Mean-Value Coordinates (MVC) [1] have been extended
to 3D [2,3]. They generalise barycentric coordinates to the kernel (the
set of points that see all vertices) of star-shaped polyhedral cages.
These coordinates are guaranteed to be positive in this kernel and C1

inside and outside of it. However, they are only C0 on its boundary.
Harmonic Coordinates (HC) [4] do not have a closed formulation

because they depend on the specific problem to solve. HC are C1

inside the cage and C0 on its boundary. They have a more local
effect than the MVC.

Positive Mean Value Coordinates (PMVC) [5] were introduced to
ensure positive coordinates all over the cage, not only in its kernel.
To fulfil this requirement they must relax the constrains of
smoothness and continuity through the supporting planes of the
boundary of this cage.

The Green Coordinates (GC) [6] are a new approach to perform
shape-preserving deformations that require the normals of the
faces of the cage to compute the coordinates. They are C1 inside
and outside the cage but discontinuous at its boundary.

Although all these schemes provide efficient deformations,
MVC may distort local details and PMVC and GC have dis-
continuities at the boundaries.

Li et al. [7] present a deformation technique using GC. The
supporting cage is replaced by an umbrella shaped cell. This
umbrella is automatically constructed over a point of the model
specified by the user and updated during the deformation step. This
method simulates shape deformation schemes in terms of the
flexibility of the control handles. It also performs local shape-
preserving deformations in real-time. Although the construction
of the umbrella is completely transparent to the user, this technique
is still completely dependent on the topology of the pseudo-cage.

Garcia et al. [8] present a multi-cage system to restrict the
deformations to local region. Furthermore, their technique also
increases the continuity of the coordinates across the boundaries
between cages by computing a blending function applied in a
parametrised neighbourhood of these faces.

Finally, Jacobson et al. [9] propose the Bounded Biharmonic Weights
(BBW) that allowmultiple deformation controls. The user can operate
with cages, skeletons and isolated control points to accomplish the
desired deformation. Their method reaches its goals through a space
discretisation and the minimisation of a Laplacian energy.

3. Overview of Celestial Coordinates

Let us consider a set of R3 vertices V ¼ fv1;…; vng. Unless
explicitly defined otherwise, in what follows we will consider that
the Deformation Domain D of the set V is its Convex Hull. Gen-
eralised Barycentric Coordinates (GBC) assign n coordinates to any
3D point pAD,

p¼
Xn
i ¼ 1

viαiðpÞ; ð1Þ

where αiðpÞ is the Generalised Barycentric Coordinate of p with
respect to the ith control vertex vi. These coordinates are only
computed once for any relevant point of the deformable geometric
model. Deformations are then driven by V in a very simple way
through Eq. (1), using the initial coordinates αiðpÞ and the new
positions of the control vertices v0

i.
By converting Eq. (1) into

Pn
i ¼ 1 viαiðpÞ�pð Þ ¼ 0, we can write

Xn
i ¼ 1

βi q
!

i ¼ 0
! ð2Þ

where q!i ¼ ðvi �pÞ
di

and di ¼ J ðvi�pÞJ . With this expression, the

final coordinates αi are obtained as

αiðpÞ ¼
ωiðpÞPn

j ¼ 1ωjðpÞ
; ð3Þ

where ωiðpÞ ¼ βi
di
, a well-known alternative formulation of GBC.

In what follows, we will use the term Celestial Coordinates to
identify the family of positive Generalised Barycentric Coordinate
(GBC) schemes. They are defined by Eq. (2) by imposing that 8 i βiZ0

Xn
i ¼ 1

βi q
!

i ¼ 0
! 8 i βiZ0: ð4Þ

The name of Celestial Coordinates (CC) comes from the use of unit
vectors q!i, which are the projection of the control vertices vi over a
unit Sphere during their computation process in Eq. (4). We call this
Sphere the Celestial Sphere.

Positive Mean-Value Coordinates [5] are a good example of a
member of the Celestial Coordinates family since they are always
positive in their domain. However, most of the schemes discussed in
the previous Section are not CC. For example, Mean-Value Coordi-
nates [2] are only positive if p is located inside the Kernel of the user-
defined cage. Thus, they behave as Celestial Coordinates if, and only
if, the Cage is convex. A similar situation takes place with the
Spherical Barycentric Coordinates [10]. Unlike these schemes, the
goal of the next two sections is to propose CC schemes which are
only based on the position of the control vertices vi and which do not
depend on user-defined Cages nor on automatically computed con-
nectivity among these control vertices. We therefore define a CC-
subfamily called Point-Based Celestial Coordinates. They include all
schemes in the CC family that do not need any kind of connectivity
between the control vertices to compute the set of coordinates.

Any algorithm providing a set of positive βi values fulfilling
Eq. (4) for every 3D point pAD is a CC-scheme candidate (it
should also fulfill standard GBC properties as reproduction of the
identity, reproduction of the unity and smoothness, as discussed in
Section 6). Anyway, Eq. (4) has two possible interpretations:

� First, it can be seen as a set of three scalar products between Rn

vectors. Let us define the vectors x ; y ; zARn as the x-coordi-
nates, y-coordinates and z-coordinates of the projected vectors
q!i, respectively, and the vector β¼ fβ1;…βng. Then, Eq. (4)
requires that βARn

þ and also that βAV ? where V is the linear
space spanned by x ; y ; z . In other words, β must belong to the
region V ? \ Rn

þ in Rn.
� Eq. (4) can also be interpreted in R3, by defining a convex linear

combination of the projected vectors q!i which must result in
the null vector.

Observe that V ? \ Rn
þ is always non-empty for points pAD, as

any point inside a Convex Hull can be expressed as a convex
combination of the vertices that define this Convex Hull, and p is
always in the Convex Hull of the projections of the control vertices
on the unit Sphere.

The following sections present two new schemes that belong to
the Point-Based Celestial Coordinates family. They are the T-Celestial
Coordinates and the S-Celestial Coordinates. T-Celestial Coordinates
derive from the first Rn interpretation, whereas S-Celestial Coor-
dinates come from the R3 one.

4. T-Celestial Coordinates

T-Celestial Coordinates derive from the Rn interpretation in
Section 3. They are based on a transformation function T which
maps any vector in the span of the vectors x ; y ; zARn to the
positive region Rn

þ . The computation of the vector β for any point
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