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In this paper, we introduce a simple method for sketching 3D models in arbitrary topology. Using this
method, we have developed a system to convert silhouette sketches to 3D meshes that mostly consists
of quadrilaterals and 4-valent vertices. Because of their regular structures, these 3D meshes can
effectively be smoothed using Catmull-Clark subdivision. Our method is based on the identification of
corresponding points on a set of input curves. Using the structure of correspondences on the curves, we
partition curves into junction, cap and tubular regions and construct mostly quadrilateral meshes using

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Sketch based interfaces for modeling started almost 20 years
ago with the pioneering work by Tanaka et al. [1] and it gained
significant attention with revolutionary work by Igarashi et al. [2].
Since then a wide variety of methods have been introduced [3,4].
In this paper, we present a curvature based curve partitioning
approach for sketch based modeling of free-form 3D shapes. For
partitioning curves we have developed the 2D-correspondence
function as an extension of the shape diameter function [5]. 2D-
correspondence function is used to identify corresponding points
on the curves and to robustly classify junction, cap and tubular
regions of the curves (see Fig. 2). Based on this classification, it is
easy to construct 3D meshes with mostly quadrilateral faces and
4-valent vertices. These meshes can effectively be smoothed by
Catmull-Clark subdivision [6] since they have only a few extra-
ordinary vertices (see Fig. 1). We have also implemented the
method to demonstrate the effectiveness of the new approach.
Our current implementation can construct 3D models only from
silhouette curves. We do not allow T-junctions (occluded curves),
which can provide additional information about the shapes [7,8].

Our process for 3D sketching consists of three steps: curve
construction, curve partitioning and mesh construction.

(1) Curve construction: This is a 1-manifold curve construction
from a given set of arbitrary strokes. Section 3 briefly
describes this process.
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(2) Curve partitioning: This is the process of partitioning the
curves into positive, negative and zero curvature regions
using 2D-correspondence function. This is main contribution
of our paper and it is described in Section 4 in detail.

(3) Mesh construction: This is the final process that converts the
2D curves to 3D models. Section 5 provides a description of
this process.

In the next section, we briefly discuss previous work on sketch
based shape modeling.

2. Related work

Sketch based modeling has been influential in creating many
exciting products and software. For instance, the ideas developed
in papers [9,10] provided the conceptual basis of SketchUp soft-
ware [11], which is widely used for modeling simple architectural
geometrical shapes. There also exist methods for modeling trees
[12], modeling garments [13], modeling using symmetries [14],
modeling with 3D curve networks [15,16], designing highways
[17] and terrains [18].

In this paper, we are interested in sketching free form smooth 3D
shapes like Teddy [2], which is probably one of the most influential
works in sketch based modeling. Teddy is based on the centroidal
distance transformation which is closely related to the medial axis
transformation [19]. The distance from a point on the boundary to
the medial axis is the radius of the maximal ball, whose center lies
on the medial axis, touches the boundary at the point, and is
completely contained in the object. This ball is called the medial-
ball, and its radius can be seen as a form of local shape-radius
connecting the boundary to the medial axis. The problem with
medial axis transformation is that the definition and extraction of
the medial axis or even of discrete approximations using skeletons
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Fig. 1. A Genus-2 Mesh created by our system. Our method can partition user
drawn sketches shown in (a) into a set of junctions, tubes and caps regions using a
correspondence shown in (b). Using this partitioning it is easy to construct 3D
models as shown in (c). These models can effectively be smoothed since they
consists of mostly quadrilaterals as shown in (d). (a) input stroke data,
(b) correspondence function applied, (c) generated mesh and (d) smoothed mesh.

are complex and often error prone [5]. Another problem using
medial axis transformation in 3D mesh generation is that the
resulting meshes are usually triangulated, which may require a
beautification step [20]. Our corresponding function approach,
which is inspired by the 3D shape diameter function [5], is also
related to medial axis transform but is relatively robust and
guarantees to construct meshes with mostly quadrilaterals and
4-valent vertices.

Our work is also related to sketch-based subdivision method
[21], which presents a sketch-based interface to design subdivi-
sion models. By taking the profile surface curves as an input, it
generates a coarse and quad dominant control mesh with few
extraordinary vertices or faces. The corresponding limit surface
interpolates the profile curves with the capability of local control
across these curves and of the model in general. However, this
approach creates models that are basically extrusions of the
profile curves along z-axis which results in a flat looking model.
Our approach can be seen as a combination of the organic look of
[2] and smoothness achieved by subdivision surfaces suggested
by Nasri et al. [21] (see Fig. 8).

Implicit surfaces provide an alternative for sketching free form
smooth surfaces which includes convolution surfaces [22], varia-
tional Hermite-RBF implicits [23], Shapeshop [24] and others
[25-29]. Since implicit surfaces can provide exact and approx-
imate set operations, they are particularly attractive to model
complicated surfaces. In this work, we do not use an implicit
based approach.

3. Curve construction

We assume that the initial silhouette is drawn as a set of
unorganized strokes with no self-intersections and/or T-junctions.
Curve construction process combine, resample and reorder these
strokes in a way such that at the end of the process we obtain
1-manifold with well-defined inside and outside. In practice, we
allow 1-manifold with boundaries and we can still obtain con-
sistent normals.

Each stroke is represented as a poly-line in our system. We
first take the individual poly-lines (strokes) whose end points are
within a distance threshold and combine them into longer
parameterized curves. We then resample each curve C equidis-
tantly in high density to eliminate the variance in sketching
speed. Besides the position, we also record normal N; and tangent
T; for each sample point C; e C. Finally, we adjust rotation order
each curve so that the right side always indicates the inside. This
is done by using the classical inside-outside test. At the end of
this process, we obtain a set of points connected by single-links in
a consistent rotation direction. We call the resulting set of curves
1-manifold since they can define a closed shape in 2D.

4. Curve partitioning with point classification

We have developed the 2D correspondence function to parti-
tion 1-manifold curves. The corresponding function uses the

mesh partitioning property of the shape diameter function to
identify the parts of the curve as tubular, junction and cap regions
to construct 3D models. These regions are categorized based on
their total Gaussian curvature (TGC). A tubular region is any
region with zero TGC. An obvious example of tubular region is a
cylinder. A donut is also classified as a tubular region since its TGC
is zero, although local Gaussian curvatures are non-zero [30].
Junctions are regions that connect tubular regions and their TGC
is negative. Finally, caps are the regions with positive TGC. This
classification is the key for obtaining a good quality quad-mesh
since each region can easily be converted to a 3D shape as shown
in Fig. 2(d).

The process of curve partitioning using 2D-correspondence
function is simple and efficient. Let C be a 1-manifold, which
includes all C;'s, and € c C. We define 2D correspondence function
(2DCF) as a one-to-one function f : C—C that corresponds every
point C to another point C using the neighborhood-diameter at
each point C; e C. The computation of 2D correspondences con-
sists of two steps: computation of initial correspondences and
correspondence processing.

4.1. Computation of initial correspondences

Initial corresponding points are computed using a variant of
the procedure that is used in shape diameter function. In our
computation instead of the diameter, we look for the minimum
circles that can be enclosed between two curve pieces (see Fig. 4).
For every curve point C; eC, we define five 2D-cones (field-of-
views) as shown in Fig. 3(a). We search for corresponding points
G’s checking all curve points that lies inside of these five 2D-
cones. A point G is labeled as a corresponding point to C; if the
approximate radius of the circle that passes from G and C; with
normal vectors N; and N; is the smallest among all points that lies
inside of these five 2D-cones. During the search, we ignore a G, if
the line segment C;C; would intersect a neighboring connector
line segment for either of the points. Fig. 4 illustrates how we
identify enclosed circle for any two given points C; and C;. Note
that if we do not find any enclosed shape that is reasonably close
to circle, then we chose Cj and we compute the estimation of the
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Fig. 2. Our correspondence function allows us to robustly classify the portions of
curves as junctions, caps and tubes. These regions correspond to zero, negative
and positive total Gaussian curvature regions. After this classification, it is easy to
construct 3D meshes that consist of mostly quadrilateral faces. (a) Input curves,
(b) curve region, (c) surface regions, (d) 3D regions.
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