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a b s t r a c t

We propose two simple evaluation methods for time-varying density forecasts of
continuous higher-dimensional random variables. Both methods are based on the
probability integral transformation for unidimensional forecasts. The first method tests
multinormal densities and relies on the rotation of the coordinate system. The advantages
of the secondmethod are not only its applicability to arbitrary continuous distributions, but
also the evaluation of the forecast accuracy in specific regions of its domain, as defined by
the user’s interest. We show that the latter property is particularly useful for evaluating a
multidimensional generalization of the Value at Risk. In both simulations and an empirical
study, we examine the performances of the two tests.
© 2011 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

The evaluation of the accuracy of forecasts occupies a
prominent place in the finance and economics literature.
However, most of this body of literature (e.g., Diebold &
Lopez, 1996) focuses on the evaluation of point forecasts,
rather than interval or density forecasts. The driving force
for this over-focus is that, until recently, point forecasts ap-
peared to serve the requirements of the forecast userswell.
However, there is increasing evidence that a more com-
prehensive approach is needed. One example is the Value
at Risk (VaR), which is defined as the maximum loss on a
portfolio over a certain period of time that can be expected
with a certain probability. When the returns are normally
distributed, the VaR of a portfolio is a simple function of
the variance of the portfolio.1 In this case, normality jus-
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commonly the case in practice when dealing with short-horizon returns,
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tifies the use of point forecasts for the variance. However,
when the return distribution is non-normal, as is now the
general consensus, the VaR of a portfolio is determined
not just by the portfolio variance, but by the entire con-
ditional distribution of returns. More generally, decision
making under uncertainty with an asymmetric loss func-
tion and non-Gaussian variables involves density forecasts
(seeGuidolin & Timmermann, 2005; Tay&Wallis, 2000, for
a survey and discussion of density forecasting applications
in finance and economics).

The increasing importance of forecasts of the entire
(conditional) density naturally raises the issue of forecast
evaluation. Although the relevant literature is developing
at a rapid rate, it is still in its infancy. This is somewhat
surprising, considering that the crucial tools which are
employed date back a few decades. Indeed, a key
contribution by Diebold, Gunther, and Tay (1998) relies on
the probability integral transformation (PIT) result from
the work of Rosenblatt (1952). Diebold et al. point out
that the correct density is weakly superior to all forecasts.
This suggests that the forecasts should be evaluated in
terms of their correctness, as this is independent of the loss
function. To this end, Diebold et al. (1998) employ the PITs
of the univariate density forecasts, which, if accurate, are
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i.i.d. standard uniform. Theymeasure the forecast accuracy
by the distance between the empirical distribution of the
PITs and the 45° line, and argue that the visual inspection
of this distance may provide valuable insights into the
deficiencies of the model and possible ways of improving
it. Obviously, standard goodness-of-fit tests can be applied
to the PITs directly (see Noceti, Smith, & Hodges, 2003,
for a comparison of the existing goodness-of-fit tests).
Additional tests have beenproposed byAnderson, Hall, and
Titterington (1994), Bai (2003), Berkowitz (2001), Granger
and Pesaran (1999), Hong (2001), Hong and Li (2003),
Hong, Li, and Zhao (2007), Li (1996) and Li and Tkacz
(2001).

The existing evaluation methods of multidimensional
density forecasts (MDF) rely on the advances made in
the univariate case. Diebold, Hahn, and Tay (1999) extend
the PIT idea to multivariate forecasts by factoring the
multivariate probability density function (PDF) into its
conditionals and computing the PIT for each conditional.
As in the univariate case, the PIT of these forecasts
is i.i.d. uniform if the sequence of forecasts is correct.
Clements and Smith (2000, 2002) extend Diebold et
al.’s (1999) idea and propose two tests based on the
product and ratio of the conditionals and marginals.
While the latter tests perform well when there is
correlation misspecification, they perform worse than
the original test by Diebold et al. (1999) when such
misspecification is absent. However, both approaches
rely on the factorization of each period’s forecasts into
their conditionals, which may not be practical for some
applications (e.g., for numerical approximations of density
forecasts). Moreover, these approaches assume that the
forecastingmodel is correct under the null hypothesis. This
assumption has important implications for the evaluation
tools employed, particularly in relation to parameter
estimation uncertainty. Recognising this issue, another
strand of theMDF evaluation literature has recently gained
momentum. This body of literature allows for dynamic
misspecification and/or parameter estimation uncertainty,
and includes important contributions by Bai and Chen
(2008), Chen and Hong (2010) and Corradi and Swanson
(2006b) inter alia. Corradi and Swanson (2006b) construct
Kolmogorov-type conditional distribution tests in the
presence of both dynamic misspecification and parameter
estimation uncertainty. While their testing framework
is flexible, it suffers from the fact that the limiting
distribution is not free of nuisance parameters, and
bootstrapping is needed to obtain valid critical values. Bai
and Chen (2008) and Chen and Hong (2010) propose MDF
evaluation tests that, under certain conditions, deal with
the parameter estimation uncertainty. For example, Bai
and Chen (2008) use the K -transformation of Khmaladze
(1981) to remove the effect of parameter estimation, so
that a distribution-free test can be constructed. However,
they still rely on the factorization of the joint density,
and only apply this procedure to the multivariate normal
and multivariate-t distributions, in which case they obtain
closed-form results. We discuss these issues in more detail
in Section 3, and refer the interested reader to Corradi and
Swanson (2006a) and Mecklin and Mundfrom (2004) for
further insights into density forecast evaluation.

Broadly speaking, this paper belongs to the body
of literature established by Clements and Smith (2000,
2002) and Diebold et al. (1998, 1999), which does
not account for parameter estimation uncertainty. This
approach also dominates the parametric-VaR area of the
risk management literature, in which we are mainly
interested (see for example Gourieroux & Jasiak, 2010,
chap.10). Thus, in the simulations and empirical examples,
we ignore the parameter estimation uncertainty and
potential dynamic misspecification, but acknowledge that
these could be important. Finally, we stress that forecasts
may vary over time, making parameter estimation and
forecast evaluation based on the laws of large numbers
unfeasible.

This paper makes two important contributions. Firstly,
it proposes two new tests for evaluatingmultidimensional,
time-varying density forecasts, which— like their counter-
parts — may suffer from parameter estimation error and
dynamic misspecification, although they are simpler and
more flexible. Secondly, to the best of our knowledge, it
is the first to formalise and propose a theoretical frame-
work for testing the accuracy of a multidimensional VaR
(MVaR). This framework is particularly important for ex-
amining multiple sources of tail risk.

The outline of the remainder of this paper is as follows.
In Section 2, we discuss an evaluation procedure for
multinormal density forecasts. Section 3 presents a test for
arbitrary continuous densities, while Section 4 discusses
the results of Monte Carlo simulations and an empirical
application for the newly proposed tests. Finally, Section 5
concludes.

2. Evaluation procedure for multinormal density fore-
casts

Rosenblatt (1952) showed that, for the cumulative
distribution function (CDF)

⌢
F t (PDF

⌢
f t ) which correctly

forecasts the true data generating process (DGP) Ft of the
observation xt , i.e., for which

⌢
F t(xt) = Ft(xt), the PIT

zt =

 xt

−∞

⌢
f t(u)du =

⌢
F t(xt)

is i.i.d., according to U[0, 1]. Therefore, the adequacy of the
forecasts can easily be evaluated by examining the zt series
for violations of independence and uniformity.

The PIT idea was extended to the multivariate case
by Diebold et al. (1999). Their test procedure (D-test
hereafter) factors each period’sMDF into the product of the
conditionals
⌢
f t−1(x1,t , x2,t , . . . , xN,t)

=
⌢
f t−1(xN,t | x1,t , x2,t , . . . , xN−1,t)

. . .
⌢
f t−1(x2,t | x1,t) ·

⌢
f t−1(x1,t),

and obtains the PIT for each conditional distribution,
producing a set of Nzt-series, which are i.i.d. U[0, 1],
both individually and as a whole whenever the MDF is
correct.2 Rejecting the null of i.i.d. U[0, 1] for any of the zt

2 There are N! different ways of factoring the MDF
⌢
f t (x1,t−1, . . . , xN,t−1), giving us a wealth of z series with which to
evaluate the forecast.
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