
Decomposition-based classified ant colony optimization algorithm
for scheduling semiconductor wafer fabrication system q

Chengtao Guo 1, Zhibin Jiang ⇑, Huai Zhang 1, Na Li 1

Department of Industrial Engineering & Logistics Management, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China

a r t i c l e i n f o

Article history:
Received 20 March 2010
Received in revised form 26 August 2011
Accepted 1 September 2011
Available online 14 September 2011

Keywords:
Semiconductor wafer fabrication system
(SWFS)
Scheduling
Decomposition
Decomposition-based classified ACO
(D-CACO)
Ant colony optimization

a b s t r a c t

Due to its typical features, such as large-scale, multiple re-entrant flows, and hybrid machine types, the
semiconductor wafer fabrication system (SWFS) is extremely difficult to schedule. In order to cope with
this difficulty, the decomposition-based classified ant colony optimization (D-CACO) method is proposed
and analyzed in this paper. The D-CACO method comprises decomposition procedure and classified ant
colony optimization algorithm. In the decomposition procedure, a large and complicate scheduling prob-
lem is decomposed into several subproblems and these subproblems are scheduled in sequence. The clas-
sified ACO algorithm then groups all of the operations of the subproblems and schedules them according
to machine type. To test the effect of the method, a set of simulations are conducted on a virtual fab sim-
ulation platform. The test results show that the proposed D-CACO algorithm works efficiently in sched-
uling SWFS.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Semiconductor manufacturing process comprises four phases:
wafer fabrication, wafer probe, assembly, and final testing (Uzsoy,
Church, Ovacik, & Hinchman, 1992), while wafer fabrication is the
most complicated, expensive and time consuming part. In semi-
conductor wafer fabrication system (SWFS), there are hundreds
of machines working together under various constraints, and fol-
lowing numerous processing steps, to build multiple layers of
chemical patterns on a silicon wafer (Kumar, 1994; Mason, Fowler,
& Carlyle, 2002). Every layer needs to be processed in a similar
manner, so wafers have to visit a certain machine for several times,
each time for a layer of circuitry, and this is known as re-entrant
product flow (Toktay & Uzsoy, 1998). In addition, wafer fabrication
is also characterized by hybrid machine types. Several types of
equipment (e.g. single wafer processing machine, single lot pro-
cessing machine, and batch-type processing machine) work simul-
taneously in the SWFS. Due to these features, the scheduling
problem of SWFS is a generalization of job shop problem that is
strongly NP-hard (Garey & Johnson, 1979). This implies that the
SWFS problem with the Cmax criterion considered in this paper is
strongly NP-hard as well.

In view of the complexity of SWFS, dispatching policies are
commonly used for the production scheduling problems because
these policies can provide approximate solutions for large prob-
lems within reasonable computation time (Pinedo, 2000). Dis-
patching policies usually used in SWFS were reviewed in detail
by Lee, Tang, and Chan (2001). Wein (1988) studied the influence
of scheduling rules on the performance of SWFS. Under these pol-
icies, the priority of jobs waiting for processing on a machine is
evaluated. Once a machine is free, the job with the highest priority
is picked from currently available jobs that are queuing for pro-
cessing. It has been shown that a good dispatching policy may sig-
nificantly improve the performance of SWFS (Kumar, 1994).
However, there is no single dispatching rule that can work per-
fectly for all measures of performance (Holthausa & Rajendran,
1997; Uzsoy et al., 1992). Furthermore, these dispatching policies
are myopic and usually cannot lead to optimal solutions as they
work well on one machine but may ignore influences among differ-
ent machines, thus result in poor system performance (Hung &
Chang, 2002).

In order to use global shop information, some non-myopic algo-
rithms were developed. One class of such algorithms is based on
decomposition, which is used to divide large scheduling problems
into smaller ones. There are two major decomposition methods,
which are either time-sequence based or machine based. These
methods are commonly adopted in decomposing large-scale
scheduling problems into smaller ones. Rolling horizon procedures
(RHPs), a kind of time-sequence decomposition method, was
developed for dynamic scheduling problems (Ovacik & Uzsoy,

0360-8352/$ - see front matter � 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cie.2011.09.002

q This manuscript was processed by Area Editor Maged M. Dessouky.
⇑ Corresponding author. Tel.: +86 21 34206065; fax: +86 021 34206477.

E-mail addresses: chengtao526@gmail.com (C. Guo), zbjiang@sjtu.edu.cn
(Z. Jiang), zhhuai79@sjtu.edu.cn (H. Zhang), na-li03@sjtu.edu.cn (N. Li).

1 Tel.: +86 21 34206065.

Computers & Industrial Engineering 62 (2012) 141–151

Contents lists available at SciVerse ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier .com/ locate/caie

http://dx.doi.org/10.1016/j.cie.2011.09.002
mailto:chengtao526@gmail.com
mailto:zbjiang@sjtu.edu.cn
mailto:zhhuai79@sjtu.edu.cn
mailto:na-li03@sjtu.edu.cn
http://dx.doi.org/10.1016/j.cie.2011.09.002
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie


1994, 1995). According to RHPs, a scheduling problem is divided
into several subproblems along time-axis. Each subproblem corre-
sponds to a time window of the whole schedule, which is solved by
branch-and-bound algorithm or other mathematical programming
methods. This approach was improved and applied to schedule
SWFS (Sourirajan & Uzsoy, 2007). Among the machine-based
decomposition methods, one of the most successful approaches
is the Shifting Bottleneck (SB) proposed by Adams, Balas, and
Zawack (1988). In SB procedure, one critical unscheduled machine
is identified at every iteration and scheduled by a branch-
and-bound approach. This process is repeated until all machines
will have been scheduled (Singer, 2001). Based on the SB heuristic,
Revised Shifting Bottleneck procedure was developed for the
scheduling of wafer fabrication environment (Wang, 2000). Later,
another modification of the SB heuristic has been proposed in
(Mason et al., 2002) for the minimization of the total weighted
tardiness in a semiconductor wafer fabrication facility. Both RHPs
and SB combine decomposition procedures with exact methods,
such as branch-and-bound algorithm, which can obtain high-
quality schedules but requires large computer memory and long
computation time.

In recent years, some intelligent heuristic algorithms, called
metaheuristics, were applied to scheduling problems in SWFS.
Compared with traditional heuristics, these algorithms may pro-
vide better solutions using a local search procedure. Popular meta-
heuristics used in SWFS include tabu search method (Geiger,
Kempf, & Uzsoy, 1997; Mazumdar, Mathirajan, Gopinath, &
Sivakumar, 2008), simulated annealing (Chou, Wang, & Chang,
2008; Yim & Lee, 1999), and genetic algorithm (Chien & Chen,
2007; Mönch, Schabacker, Pabst, & Fowler, 2007).

The Ant Colony Optimization (ACO) algorithm (Dorigo, 1992;
Dorigo & Blum, 2005; Dorigo & Stützle, 2004) is a metaheuristic
algorithm and it was originally inspired by the behavior of ants.
Ants are capable of finding the shortest route from a food source
to their nest. They communicate via pheromone that they use in
variable quantities to mark their trails. An ant’s tendency to choose
a certain route is positively correlated to the pheromone intensity
of that trail. Since pheromone evaporates over time, its intensity
decreases if no more pheromone is laid down. If many ants choose
a certain route and all lay down pheromone, the pheromone inten-
sity of this trail increases and will attract more ants. Compared
with other methods used for the SWFS scheduling problem, ACO
has two advantages. Firstly, ACO can effectively combine some
problem-specific information with business rules during solution
search. Secondly, ACO is a model-based algorithm, which is differ-
ent from an instance-based genetic algorithm. The learning process
of ACO is distributed in each element of the model, and normally
this can lead to high-quality results.

The ACO algorithm has been used successfully in solving pro-
duction scheduling problems (Dorigo & Stützle, 2004), such as
job shop problem (Colorni, Dorigo, Maniezzo, & Trubian, 1994;
Huang & Liao, 2008), flow shop problem (Benbouzid-Sitayeb,
Ammi, Varnier, & Zerhouni, 2008; Stützle, 1998), group shop prob-
lem (Blum, 2002), and open shop problem (Blum, 2005). Recently,
ACO algorithm was used to solve scheduling problems in semicon-
ductor manufacturing system. It was used to solve scheduling
problem of single batch processing machine (Kashan & Karimi,
2008) and parallel batch processing machines (Li, Qiao, & Wu,
2009) in SWFS, and was also used to solve bottleneck station
scheduling problem in semiconductor assembly and test manufac-
turing system (Song, Zhang, Yi, Zhang, & Zheng, 2007). However, to
our best knowledge, there is no previous work on the application of
ACO algorithm for scheduling large-scale problem with hybrid ma-
chine types.

The metaheuristics have some advantages. They can obtain
near-optimal solutions that are much better than those gained by

dispatching rules, and need less computation time compared with
mathematical programming. However, it is not appropriate to ap-
ply a metaheuristic method alone to the SWFS scheduling because
of two reasons. First, although the computation time for the meta-
heuristics is not a significant factor as in mathematical program-
ming techniques, it is still impossible to schedule large-scale
complex problems within a reasonable time. Second, traditional
metaheuristic approaches usually cope with one specific type of
equipment well but are difficult to deal with hybrid machine types
in SWFS.

In this paper, we introduce a new heuristic – decomposition-
based classified ACO algorithm (D-CACO), an improved ACO algo-
rithm that shows efficacy on SWFS scheduling. The D-CACO di-
vides large-scale scheduling problem into several small
subproblems, and then solves these subproblems in sequence
using classified ACO algorithm (CACO). Different from traditional
ACO algorithm, CACO algorithm can schedule various types of
equipment under a single scheduling framework. On a virtual
fab simulation platform, the application of D-CACO method can
lead to 10–20% reduction of makespan compared to traditional
dispatching rule.

The remaining sections of this paper are organized as follows.
Section 2 discusses the scheduling model and disjunctive graph
of SWFS. Section 3 describes the proposed decomposition-based
classified ant colony optimization (D-CACO) algorithm. Two simu-
lation models are introduced in Section 4, and D-CACO algorithm is
tested by numerical experiments on simulation models in Section
5. Finally, some concluding remarks and a discussion of potential
directions for future research are presented in Section 6.

2. Problem formulation

The problem under consideration can be formulated as follows.
There are L jobs that need to be processed on K machines. These
jobs belong to the same job family and every job is composed of
J operations. Symbols i, j, k and t represent the index of a job, the
sequential number of operation in a job, the index of a machine,
and the time epoch, respectively. Let Cmax = max {C1,C2, . . . ,CL} de-
note the makespan of a schedule, where Ci denotes the completion
time of the last operation of job i for 1 6 i 6 L. Semiconductor man-
ufacturing can be described as a job shop model with re-entrant
flow to find the solution that minimizes the makespan.

The above problem may be formulated as a mathematical pro-
gramming problem as follows.

Parameters:
pijk: processing time of the jth operation of job i, which is
processed on machine k
bk: capacity of machine k, if k is a single processing machine,
bk is equal to 1; if k is a batch processing machine, bk is equal
to the maximum number of operations that could be pro-
cessed in one batch on machine k
M: a large positive number

Decision variables:
rijk: the starting time of the jth operation of job i, which is
processed on machine k
rikt: binary variable indicating whether job i is processed on
machine k at time t, and the value of rikt is defined as
follows:

rikt ¼
1; if job i is processed on machine k at time t
0; otherwise

�

dk
ij;mn: binary variable for the order of two operations, and its

value is defined as follows:

142 C. Guo et al. / Computers & Industrial Engineering 62 (2012) 141–151



http://isiarticles.com/article/7774

