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a  b  s  t  r  a  c  t

Prestress  stability  is  the  key  of  whether  a pin-jointed  assembly  could  be transformed  into  a tensegrity
structure.  This  study  developed  an  optimization  model  to investigate  the  prestress  stability  of  pin-jointed
assemblies.  The  continuous  optimization  problem  was  converted  into  a modified  traveling  salesman
problem  (TSP),  and  the  ant  colony  system  (ACS)  was  used  to  search  for  feasible  solutions.  Coefficients
for  the  independent  states  of  self-stress  were  taken  as  different  cities  in  the  network.  Several  typical
examples  were  tested.  It could  be  concluded  that  the  proposed  technique  is efficient,  and  applicable  to
both  planar  and  three-dimensional  complex  pin-jointed  assemblies.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Tensegrity structures are attracting widespread interest of
architects and structural engineers due to their remarkable con-
figurations (noting that the tensegrity structures referred to in
this paper include conventional tensegrities, tension structures and
most prestressed pin-jointed structures). They are mechanisms
while stating in the initial configurations, yet they become stable
structures after achieving feasible prestresses. A statically and kine-
matically indeterminate pin-jointed assembly will be a tensegrity
structure, if it could acquire stable equilibrium and possess ade-
quate stiffness. Therefore, prestress stability is the key of whether
an indeterminate pin-jointed assembly could be transformed into a
tensegrity structure. Identifying the prestress stability is beneficial
to better understanding and developing tensegrity structures.

For the basic theory for mechanics of statically and kinemati-
cally indeterminate pin-jointed assemblies, the work of Pellegrino
and Calladine (1986) could be referred. Two conventional methods
to explore the prestress stability of pin-jointed assemblies are the
energy method (Connelly, 1982; Motro, 2003; Skelton and Oliveira,
2009), and the equilibrium method (Pellegrino and Calladine, 1986;
Quirant et al., 2003; Guest, 2006; Zhang et al., 2009; Tran and
Lee, 2010). Calladine and Pellegrino (1991) proposed a linear
algorithm based on the equilibrium matrix, to identify whether
any states of self-stress would impart first-order stiffness to an
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inextensional mechanism mode of a pin-jointed assembly. The
determination criterion proposed by them has been used as the
prestress stability condition. Then Vassart et al. (2000) introduced
an analytical method for determining the order of mechanisms of
pin-jointed systems, based on the energy method and the varia-
tions of member length. The method is helpful to distinguish the
finite mechanisms. Sultan et al. (2001) deduced the prestress sta-
bility conditions for tensegrity structures using the principle of
virtual work, and gave a general expression varied by the ten-
sions of cables. All aforementioned methods convert the prestress
stability problems into explicit expressions of specific variables.
However, they will become rather inefficient and powerless, if
adopted for complex structures with large numbers of nodes and
members.

On the contrary, heuristic search methods such as the genetic
algorithm (GA), the simulated annealing algorithm (SA), and the
ACS do not depend on the initially selected variables. They have
powerful global searching ability in large solution spaces. Search-
ing and optimization of initial prestresses for regular tensegrity
structures were conducted by the GA (El-Lishani et al., 2005; Xu
and Luo, 2010b)  and the SA (Xu and Luo, 2010a).  The methods
introduced in their work optimized the initial prestresses for some
specific structures with simple topology and a small number of
nodes. Nevertheless, it would be difficult to investigate the assem-
blies with much more nodes and states of self-stress. To overcome
this difficulty, we  adopt a different optimization model and an
efficient algorithm based on the ACS. Prestress stability of some pin-
jointed assemblies which have many nodes, elements, and complex
geometries will be investigated in this study.
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2. Prestress stability condition

Consider a pin-jointed assembly in a d-dimensional space (d = 2,
3). The structure consists of n nodes, b members, and g kinematic
constraints. Assume that: (a) all the members are straight and have
a linear stress–strain relationship; (b) no external loads act on the
assembly; and (c) the assembly has m independent modes of inex-
tensional mechanism and s states of self-stress. Then the structure
is said to be prestress stable, when the prestress stability condition
proposed by Calladine and Pellegrino (1991) is satisfied, given as:

ˇT
s∑

i=1

(˛iP
T
i D)  ̌ > 0 (1)

where � is a m ×1 nonzero vector; ˛i is the scalar coefficient
for the ith state of self-stress; the (nd − g) × m matrix Pi con-
tains the product forces of the ith state of self-stress; and the
(nd − g) × m matrix D represents the modes of inextensional mech-
anism. It should be noted that d(d + 1)/2 rigid-body motions have
been excluded from the mechanisms’ matrix D, if the assembly
is free-standing (g = 0). The above inequality could be guaranteed
when the m × m square matrix Q is positive definite, where

Q =
s∑

i=1

(˛iP
T
i D) (2)

For assemblies with more than one independent state of self-
stress, many different choices of the coefficient ˛i in Eq. (1) are
available. Thus, it is difficult using the conventional methods to seek
the right coefficients, and to guarantee the matrix Q to be positive
definite. An optimization algorithm is preferred in order to choose
a feasible combination of the states of self-stress that stabilize all
the mechanisms of the assembly.

Since all the eigenvalues of a positive definite matrix are pos-
itive, the number q of nonpositive eigenvalues of the matrix Q is
implicitly determined by the coefficients, written as:

q = f (˛) (3)

where � = [˛1, ˛2, ..., ˛s]T, and all the coefficients ˛i (i = 1, 2, ..., s)
could be bounded in [− 1, 1], as the combined state of self-stress
is dimensionless (in fact it is just a normalized form of prestress).
f(�) is the function representing the number of nonpositive eigen-
values. The matrix Q is positive definite when q = 0. Therefore, the
optimization problem for determining the prestress stability of a
pin-jointed assembly could be formulated as:

minimize f (˛)
subject to : ˛i ∈ [−1, 1] i = 1, 2, ..., s

(4)

If a feasible solution to f(�) = 0 is obtained, the corresponding fea-
sible prestress mode t will be given by:

t = [t1, t2, ..., tb]T (5)

where the normalized mode of prestress t = t(�) is obtained from
the product between the coefficients and the corresponding states
of self-stress, and it transforms the pin-jointed assembly into a
stable tensegrity structure.

As some members of a tensegrity structure are designed to sup-
port tension and others to support compression exclusively, the
signs of the prestress mode should be considered in the process of
optimization (Yuan and Dong, 2003). Define a b × b diagonal matrix
T to describe the member types, written as

T =

⎛
⎝

T11 0 0

0
. . . 0

0 0 Tbb

⎞
⎠ (6)

where Tee = − 1 means the member e = 1, 2, ..., b is appointed as a
compression bar, Tee = 1 represents the member e is a tension cable,
and Tee = 0 indicates the member e has not been appointed. Then,
the number of negative values u(�) in the matrix T · t is the actual
number of members on which the condition of appointed member
types is unsatisfied. u(�) is converted to

u(˛) = u(˛)
u(˛) + 1

(7)

to guarantee that u(˛) ∈ [0, 1).
However, from a designer’s point of view, the final optimized

prestress mode should significantly reduce the complexity of
sections of members and the construction cost. Hence, another
function ε(�) is defined to describe the unevenness of the prestress
modes (Xu and Luo, 2010a), given by

ε(˛) =

√∑b

e=1
(|te|−|t|)2

b

|t| (8)

where |t| = (
∑b

e=1

∣∣te

∣∣)/b is average of the absolute value of the
prestress modes. Similarly, this new function is transformed into

ε(˛) = ε(˛)
ε(˛) + 1

(9)

to guarantee that ε(˛) ∈ [0, 1). Then the final objective function
is written as

minimize Num(˛) = [f (˛) + C] × [fpenalty(˛) + 1]�

Subject to : ˛i ∈ [−1, 1] i = 1, 2, ..., s
(10)

where Num(�) is the penalized object function; fpenalty(˛) = u(˛) +
ε(˛) is the penalty function, to consider the appointed member
types (Eqs. (6)–(7)),  and to get optimized distribution of prestresses
(Eqs. (8)–(9)).  A constant positive number C is introduced in Eq.
(10) to assure that the object value Num(�) is greater than 0, and
hence to avoid the penalty function losing weight when f(�) = 0.
The constant � is to control the weight of the penalty function.

3. Ant colony systems

The optimization problem described by Eqs. (7), (9), and (10)
could be converted into a modified TSP based on the ACS. Therefore,
a brief introduction to concepts of the ACS and TSP is also presented
in this section.

3.1. General aspects of ACS

The ant colony algorithm was introduced by Dorigo and
Gambardella (1997) and Dorigo et al. (2006),  to solve some combi-
natorial optimization problems such as the TSP and the quadratic
assignment problem. Since then, it has been successfully adopted
to some structural designs and topology optimizations in the engi-
neering field (Camp and Bichon, 2004; Kaveh and Shojaee, 2007;
Kaveh and Talatahari, 2010). The ACS is a bionic algorithm inspired
by the path searching method of ant colonies in nature. The for-
aging behavior, which is an important character of an ant colony,
leads ants to find the optimal path from foods to their nest, and vice
versa. The ant colonies communicate path information through the
pheromone trails they deposit. As the consistence of pheromone
reflects the experience acquired by the ants, it is proportional to
the produced solutions. The shorter the tour made by an ant, the
greater the consistence of pheromone it deposits along the paths.
Subsequently, the rising pheromone trail is likely to attract much
more ants. However, the pheromones will evaporate over time, to
avoid the situation in which all ants complete the same tour and
obtain local optima.
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