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a  b  s  t  r  a  c  t

Computer  simulation  has  become  an  indispensable  tool  in  engineering  design  as  they  allow  an  accurate
evaluation  of the  system  performance.  This  is critical  in  order  to  carry  out  the  design  process  in a reli-
able  manner  without  costly  prototyping  and  physical  measurements.  However,  high-fidelity  computer
simulations  are  computationally  expensive.  This  turns  to  be  a fundamental  bottleneck  when  it comes  to
design  automation  using  numerical  optimization  techniques.  In  particular,  direct  optimization  of simu-
lation  models,  typically,  requires  a  large  number  of  model  evaluations,  which  may  be  impractical  or  even
infeasible  in  a reasonable  timeframe.  Possibly  the  most  promising  approach  to  alleviate  this  difficulty  is
surrogate-based  optimization  (SBO),  where  direct  optimization  of  expensive  models  is  replaced  by  an
iterative  enhancement  and  re-optimization  of  fast  surrogate  models.  While  a  large  variety  of  surrogate
modeling  and optimization  are  available,  the  methods  exploiting  the  so-called  physics-based  surrogates
seem  to  be  the  most  efficient  ones  because  the  knowledge  about  the  system  of  interest  embedded  in
the  underlying  (often simulation-based)  low-fidelity  model  ensures  good  generalization  of  the  surrogate
and  a  rapid  convergence  of  the  SBO  algorithm.  In  this  paper,  we  review  a specific  technique  of  this  class,
that  is,  the  adaptive  response  correction  (ARC).  We  discuss  the formulation  of  the  method,  its  limitations
and  generalizations,  as  well  as  illustrate  its  application  for solving  problems  in various  areas,  including
microwave  engineering,  antenna  design,  and  aerodynamic  shape  optimization.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Computational tools have become ubiquitous in contempo-
rary engineering. Initially utilized mostly for verification purposes,
nowadays, simulation models a play fundamental role in the
design process itself, in particular, design optimization. The lat-
ter usually refers to adjustment of geometry and/or material
parameters of the system at hand so that given performance
specifications are satisfied. Simulations are performed in order
to assess the quality of the candidate designs produced dur-
ing such a procedure, i.e., while seeking for an optimal (in a
given sense) set of design parameters. Clearly, automation of the
simulation-driven design process by means of numerical optimiza-
tion algorithms is highly desirable. At the same time, it may  be
quite challenging. A major bottleneck is the high computational
cost of evaluating the simulation models. Despite the progress
in the development of computational tools (both hardware- and
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software-wise), various types of simulations (finite element [1],
computational fluid dynamics [2], electromagnetic [3]), especially
for complex systems at fine levels of discretization of the struc-
ture/system at hand, may  be as long as hours, days, or even weeks
per design. Consequently, straightforward optimization of such
model using conventional algorithms (e.g., gradient-based meth-
ods with numerical derivatives [4], pattern search procedures [5],
or global optimizers exploiting population-based metaheuristics
[6]) is normally impractical because of a large number of sim-
ulations required by off-the-shelf methods. Additional problems
include numerical noise that is usually present in responses gen-
erated by simulation models. The aforementioned issues result in
a situation where simulation-driven optimization is often realized
as a hands-on process involving considerable interaction with the
designer. A typical example is design through repetitive parame-
ter sweeps guided by experience, in which engineering insight is
used to decide which parameters of the system should be adjusted
and in which order in the search for an improved parameter
setup. Although such procedures usually yield acceptable results,
they are difficult to automate and cannot lead to truly optimum
solutions.
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Various attempts to automate and improve the efficiency of
simulation-driven design have been considered and proposed in
the literature over the recent years. In the context of numerical
optimization, the following approaches (and their combinations)
should be mentioned: (i) the use of adjoint sensitivities [7,8], (ii)
model order reduction [9] as well as techniques for reducing dimen-
sionality of the design space (e.g., [10,11]), and (iii) surrogate-based
optimization (SBO) [12–15]. Adjoint sensitivity allows for evaluat-
ing the response gradients with little extra computational effort
[16,17], resulting in a considerable speed-up of the gradient-based
optimization process, particularly for higher-dimensional design
spaces, where gradient estimation using finite differences is com-
putationally prohibitive. Model order reduction techniques aim
at reducing the number of internal degrees of freedom (states)
of the system of interest (e.g., by using reduced order rational
function approximation by means of vector fitting methods [18]),
thus, reducing the complexity of the system description. Similarly,
methods such as principal component analysis (PCA) [19] allow for
exploring correlations between design variables in the search space
aiming at reducing the number of independent parameters taken
into account in the design process. A good example of PCA efficiency
is aerodynamic shape optimization, where, e.g., the coefficients of
airfoil geometry parameterization are highly correlated (i.e., their
changes have similar effect on the objectives, such as the aerody-
namic forces), so that dimensionality of the reduced latent space
(spanned by the most important principal components) is signifi-
cantly lower than the original one, and, therefore, the optimization
carried out in the latter is much faster with only a slight degradation
of accuracy [10].

Among the methods mentioned in the previous paragraph, SBO
is the one we focus on in this work. SBO replaces direct optimization
of the expensive simulation model by means of iterative construc-
tion and re-optimization of a fast representation of the system,
referred to as a surrogate model [20]. The surrogate model can be
data-driven (i.e., constructed by approximating data pairs obtained
by sampling the search space and acquiring corresponding high-
fidelity simulation results [21,22]) or physics-based, i.e., obtained
by a suitable correction of an underlying low-fidelity model [23].
The low-fidelity model is typically also simulation-based but with
relaxed accuracy (coarse discretization, relaxed convergence crite-
ria, etc. [24]). Physics-based methods are less general due to the
fact that low-fidelity models are normally problem dependent. On
the other hand, these methods tend to be more efficient because
the knowledge embedded in the low-fidelity model ensures a
better generalization capability of the surrogate [23]. One of the
most popular physics-based SBO techniques is space mapping (SM)
[20], originally developed for handling expensive problems in the
microwave engineering area [15].

In general, there are several ways of correcting the low-fidelity
model in order to create a surrogate. These include transformation
of the low-fidelity model parameter space (e.g., input SM popular in
electrical engineering [15]), exploitation of certain parameters that
are normally fixed in the high-fidelity model but can be adjusted in
the low-fidelity one for the sake of reducing misalignment between
the two (e.g., implicit SM [25]), adjustment of “global” parameters
(such as time and frequency) that allow the scaling of vector-valued
responses of the low-fidelity model (e.g., frequency scaling in elec-
trical engineering [15]), and, finally, correction of the low-fidelity
model response [20].

Response correction is the simplest, yet, potentially, the most
effective approach that allows for aligning the low- and high-
fidelity models. In the optimization context, the objective is to
ensure at least zero-order consistency between the surrogate and
the high-fidelity model [26], i.e., perfect agreement between the
model responses at the point at which the model is established
(typically, the most recent design produced by the optimization

algorithm [12]). First-order consistency [26] is more advantageous,
however, it requires high-fidelity model derivatives. Response cor-
rection methods, can be divided into two main categories: (i)
parametric techniques, where the model correction is formulated
using explicit analytical formulas (e.g., output SM [20], AMMO
[26], manifold mapping [27]), and (ii) non-parametric ones, where
the model correction is defined implicitly by exploring correla-
tions between the low- and high-fidelity models (i.e., through
appropriate analysis of the model responses). One  of the most
promising techniques in this class is shape-preserving response
prediction (SPRP) [28]. A comprehensive review of SPRP can be
found in [29]. Another one is the adaptive response correction (ARC)
[30]. ARC was originally developed and applied to optimization
of microwave filters [30]. It is a non-parametric method, where
the low-fidelity model correction is implemented by translating
the changes (due to the adjustment of, e.g., geometry parameters)
of the low-fidelity model response (e.g., scattering parameters vs.
frequency [15], or the airfoil pressure distribution vs. chord-line
coordinate [43]) into the corresponding changes of the high-fidelity
model response without evaluating the latter. Unlike space map-
ping, ARC does not require extraction of any parameters. Therefore,
it is particularly suited to work with relatively expensive low-
fidelity models (such as coarse-discretization simulation ones).
Similar to SPRP, ARC fully exploits the knowledge contained in the
low-fidelity model, but it does not have SPRPs limitations regarding
the required response shape similarities of the models of different
fidelity [29].

In this paper, we review the formulation of the adaptive
response correction method, as well as its applications for solv-
ing design optimization problems involving expensive simulation
models in various engineering disciplines, including microwave
engineering, antenna engineering, and aerodynamics. We,  further-
more, discuss the practical issues of ARC and give recommendations
for applying ARC in design.

2. Formulation of adaptive response correction method

In this section, we recall the formulation of the simulation-
driven design optimization task as a nonlinear minimization
problem. We,  furthermore, give an outline the fundamentals of
surrogate-based optimization, and the construction of surrogate
models using the ARC technique.

2.1. Optimization problem formulation

The optimization task is formulated here as a nonlinear mini-
mization problem of the form

x∗ = argmin
x

U(f (x)) (1)

where f(x) ∈ Rm denotes the response vector of a high-fidelity sim-
ulation model to be optimized; x ∈ Rn is a vector of deterministic
designable variables, e.g., geometry or material parameters to be
adjusted. The vector f(x) represents relevant deterministic char-
acteristics of the system under design. U is a given scalar merit
function that encodes given design specifications. It is formulated
so that a better design corresponds to a smaller value of U(f(x)). x*
is the optimum design to be determined. Normally, the problem
(1) is constrained with possible constraints including lower/upper
bounds for the design variables, l ≤ x ≤ u, as well as nonlinear
inequality and equality constraints, cineq.k(x) ≤ 0, k = 1, . . .,  nineq,
ceq.k(x) = 0, k = 1, . . .,  neq. We  do not consider problems involving
uncertainty in the parameters, objectives, and constraints.
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