
Applied Soft Computing 13 (2013) 3008–3020

Contents lists available at SciVerse ScienceDirect

Applied Soft Computing

j ourna l ho me page: www.elsev ier .com/ locate /asoc

PREACO: A fast ant colony optimization for codebook generation

Chun-Wei Tsaia, Shih-Pang Tsengb, Chu-Sing Yangc, Ming-Chao Chiangb,∗

a Department of Applied Informatics and Multimedia, Chia Nan University of Pharmacy & Science, Tainan 71710, Taiwan, ROC
b Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, ROC
c Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan, ROC

a r t i c l e i n f o

Article history:
Received 1 January 2012
Received in revised form 5 January 2013
Accepted 16 January 2013
Available online 29 January 2013

Keywords:
Ant colony optimization
Codebook generation problem
Pattern reduction

a b s t r a c t

This paper presents an effective and efficient method for speeding up ant colony optimization (ACO) in
solving the codebook generation problem. The proposed method is inspired by the fact that many com-
putations during the convergence process of ant-based algorithms are essentially redundant and thus
can be eliminated to boost their convergence speed, especially for large and complex problems. To evalu-
ate the performance of the proposed method, we compare it with several state-of-the-art metaheuristic
algorithms. Our simulation results indicate that the proposed method can significantly reduce the com-
putation time of ACO-based algorithms evaluated in this paper while at the same time providing results
that match or outperform those ACO by itself can provide.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Vector quantization (VQ) is an important technique for not only
image compression but also pattern recognition [1,40], pattern
compression [42,43], speech recognition [37], and face detection
[61]. Generally, three phases—codebook generation, encoding, and
decoding—and a codebook are employed by VQ to encode and
decode a signal [30]. Because the codebook generation phase may
strongly affect the performance of VQ, it has become an important
research topic for many years. Generalized Lloyd algorithm (GLA)
[44] is one of the most widely used methods in codebook generation
because it is simple and easy to implement. Also known as k-means
[48], the basic idea of GLA is to find a codebook that minimizes the
distortion between the training patterns and the codewords.

To improve the quality of VQ, many heuristic-based algorithms
[39,12,25,25,19] have been proposed for the codebook generation
problem (CGP) over the past one and a half decades or so. To reduce
the computation time of CGP, two kinds of approaches have been
taken. The first kind of approach is to employ a structured code-
book to speed up the VQ process, such as tree-structured codebook
[10,54,68]. The second kind of approach is to reduce the number
of codewords compared so as to reduce the search complexity of
the partitioning step of GLA, such as codeword reduction [11,16,50]
and triangle inequalities [31]. Of course, many other fast algorithms
[67] have also been proposed to reduce the computational time of
GLA, such as dimensional reduction [18].

∗ Corresponding author. Tel.: +886 7 5252000x4321; fax: +886 7 5254301.
E-mail address: mcchiang@cse.nsysu.edu.tw (M.-C. Chiang).

1.1. The motivation

Although being able to provide a better codebook, most
heuristic-based algorithms for the CGP normally take a much longer
computation time than deterministic algorithms. This is the main
reason why it is important to reduce the computation time of
heuristic-based algorithms when they are applied to the CGP.
Another reason is that most fast methods are designed for GLA-
based algorithms [67]. Although some researches [31] focus on
cutting down the number of similarity comparisons so as to reduce
the computation time of CGP, they are not designed for heuristic-
based algorithms.

As depicted in Fig. 1, subsolutions of ant colony optimization
(ACO) for the CGP1 do not necessarily reach their final state at
the same time on the convergence process. This figure eventu-
ally shows that more than 90% of the image blocks are assigned
to the same codewords after 100 iterations which implies that
many of the computations of ACO for the CGP after 100 iter-
ations are essentially redundant. These results also tell us that
if subsolutions that have reached the final state can be elimi-
nated on the convergence process, then the computation time of
ACO for the CGP can be significantly reduced. Hence, this paper
presents an effective and efficient method for speeding up ACO
in solving the CGP which works by eliminating computations
that are essentially redundant during the convergence process of
ACO.

1 As far as ACO for the CGP is concerned, a subsolution is defined as the assignment
of a pattern to a codeword. Otherwise, it is as defined in [21].

1568-4946/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.asoc.2013.01.017

dx.doi.org/10.1016/j.asoc.2013.01.017
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:mcchiang@cse.nsysu.edu.tw
dx.doi.org/10.1016/j.asoc.2013.01.017

C.-W. Tsai et al. / Applied Soft Computing 13 (2013) 3008–3020 3009

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800 900 1000

Pe
rc

en
t o

f
su

bs
ol

ut
io

ns
 r

ea
ch

ed
 th

e
fi

na
l s

ta
te

Generation

lenna
peppers
airplane
baboon

Fig. 1. Example showing the percentage of subsolutions of ant colony system (ACS)
[21] for the CGP arrived at the final state during the convergence process when
applied to a set of 512 × 512 grayscale images with the codebook size set equal to
256.

1.2. The contribution

Unlike the pattern reduction methods described in [13,64] that
are designed for single-solution-based algorithms and consider
patterns that are close to the centroid of each cluster as patterns
to be eliminated, the algorithm described herein is designed
for population-based algorithms and considers patterns that have
reached a consensus by voting as patterns to be eliminated. The pro-
posed algorithm is not just an extension of [65] that is designed
for solving the traveling salesman problem (TSP); rather, the pro-
posed algorithm is designed for the CGP, which uses one-iteration
k-means as the local search operator to improve the final result
of ACO for the CGP. The main contributions of the paper can be
summarized as follows:

1 This paper first points out that there are many redundant com-
putations on the convergence process of ACO for the CGP.

2 A fast algorithm adapted from [65], called pattern reduction
enhanced ant colony optimization (PREACO), is then presented
to reduce the computation time of ACO in solving the CGP while
at the same time providing a result that either matches or out-
performs the result ACO by itself can obtain.

3 This paper shows that the proposed algorithm can be easily
plugged into ACO for reducing its computation time in solving a
very different combinatorial optimization problem—CGP instead
of TSP as described in [65]. These two applications further show
that the notion of pattern reduction can be applied to other com-
binatorial optimization problems, such as bin packing problem
and job shop scheduling problem.

4 A detailed analysis of parameter settings is also given to show
the impact they may have on the performance of the proposed
algorithm.

1.3. The organization

The remainder of the paper is organized as follows. Section 2
gives a brief introduction to the ACO and its variants. Section 3
first defines the CGP and then discusses how to apply ACO to this
problem. Section 4 describes in detail the proposed algorithm. The
simulation results are discussed in Section 5. Also discussed in this
section are the datasets evaluated and the settings of the parame-
ters. We conclude our work in Section 6.

2. Related work

2.1. The ant colony optimization

Over the past two and a half decades or so, metaheuristics
[29,55,6,5] have been widely used in solving complex problems,

such as the TSP and the CGP. Several new population-based
algorithms have been proposed, which consist of ant colony opti-
mization [22,21], particle swarm optimization (PSO) [35], bees
algorithm [53], wasps [7], and other animal societies [3]. These
algorithms are collectively referred to as the swarm intelligence
(SI) [2,36,24]. As one of the top-performing methods of SI, ACO has
been successfully applied to solve a wide range of problems [3,23].
The key concept of ACO is to use a colony of cooperative artificial
ants to find “good” paths between their colony and a source of food
in such a way that these good paths can be considered as good
solutions of a discrete optimization problem [23].

Algorithm 1. Outline of the ACO

1 Initialization()
2 While the termination criterion is not met
3 s = SolutionConstruction()
4 � = PheromoneUpdate()
5 LocalSearch(s) /* optional */
6 End
7 Output the result.

As shown in Algorithm 1, the very first step ACO takes is to
initialize all the parameters. After that, the main procedure on
lines 2 through 6 is repeated until the stop condition is met. The
main procedure is composed of two required operators Solution-
Construction() and PheromoneUpdate() and one optional operator
LocalSearch().

2.1.1. The solution construction operator
As the name suggests, the solution construction operator on

line 3 is performed by each ant to construct its routing path (i.e., a
solution of the problem in question) based on the pheromone and
heuristic information available. More precisely, the routing path
of each ant is constructed edge by edge until the routing path is
completely established. The probability of selecting edge eij, i.e.,
the probability of an ant at subsolution i selecting j as the next
subsolution (i.e., subsolution i + 1), is defined as

pk
ij =

⎧⎪⎨
⎪⎩

[�ij]
˛[�ij]

ˇ∑
j∈Nk

i
[�ij]

˛[�ij]
ˇ

if j ∈ Nk
i ,

0 otherwise,

(1)

where Nk
i denotes the set of candidate subsolutions (i.e., subso-

lutions that can be selected by ant k at subsolution i); �ij and �ij
denote, respectively, the pheromone value and the heuristic value
associated with eij.

2.1.2. The pheromone update operator
Again, as the name suggests, the pheromone update operator

on line 4 is used to update the pheromone values that are asso-
ciated with the search experience of ACO. That is, the pheromone
values are associated with the routing path of an ant, which may in
turn increase the probability of other ants choosing the same path
(edges). On the other hand, the pheromone evaporation is used
to avoid rapid convergence to a local region [23]. The pheromone
update operator employed for updating the pheromone value of
each edge eij is defined as

�ij = (1 − �)�ij + �

m∑
k=1

��k
ij, (2)

��k
ij =

1
Lk

, (3)

where Lk denotes the quality of the solution created by ant k; � ∈ (0,
1] denotes the evaporation rate.

http://isiarticles.com/article/7873

