Computers & Geosciences 70 (2014) 44-54

Contents lists available at ScienceDirect

Computers & Geosciences

journal homepage: www.elsevier.com/locate/cageo

COMPUTERS
GEOSCIENCES

Database versioning and its implementation in geoscience

information systems

@ CrossMark

Hai Ha Le ** Helmut Schaeben ?, Heinrich Jasper”, Ines Gérz®

@ Institute for Geophysics and Geoinformatics, TU Bergakademie Freiberg, Freiberg, Germany

b Institute for Mathematics and Informatics, TU Bergakademie Freiberg, Freiberg, Germany

ARTICLE INFO ABSTRACT

Article history:

Received 12 December 2013
Received in revised form

22 May 2014

Accepted 23 May 2014
Available online 5 June 2014

Keywords:

Database version manager
Modeling time

Knowledge time

Geoscience information system
Long transaction

Database workspace manager

Many different versions of geoscience data concurrently exist in a database for different geological
paradigms, source data, and authors. The aim of this study is to manage these versions in a database
management system. Our data include geological surfaces, which are triangulated meshes in this study.
Unlike revision/version/source control systems, our data are stored in a central database without local
copies. The main contributions of this study include (1) a data model with input/output/manage
functions, (2) a mesh comparison function, (3) a version merging strategy, and (4) the implementation of
all of the concepts in PostgreSQL and gOcad. The software has been tested using synthetic surfaces and a
simple tectonic model of a deformed stratigraphic horizon.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Following the success of geographic information systems (GIS),
geoscience information systems (GSIS) have received attention in
recent years. GSIS manage geological objects with complex geo-
metries in at least 3-dimensional Euclidean space, mainly in the
subsurface. In many nations, the subsurface is considered to be an
economic resource and is managed and protected by state autho-
rities. These authorities, mainly the Geological Surveys, use 3D
geological models as a basis for their decisions. Subsurface knowl-
edge, however, is always incomplete because geological data are
only available along specific lines or surfaces such as drilling paths
or seismic sections, respectively. To cope with new data from
experiments, such as new wells, the models are frequently
updated. Information deduced from these models is included in
mine operation plans, ground water production plans, and envir-
onmental sustainability assessments. Not all decisions, however,
are correct, e.g., a mining operation may cause unexpected
destruction or pollution. If an insurance event occurs, one has to
check whether the complication could have been predicted using
available knowledge and models from the data at the time of the
decision. Models can be revised when new data become available

* Corresponding author. Tel.: +49 1573 8686588.
E-mail addresses: lehai@mailserver.tu-freiberg.de (H.H. Le),
schaeben@tu-freiberg.de (H. Schaeben),
jasper@informatik.tu-freiberg.de (H. Jasper), IGo@geo.tu-freiberg.de (I. Gorz).

http://dx.doi.org/10.1016/j.cage0.2014.05.011
0098-3004/© 2014 Elsevier Ltd. All rights reserved.

and can often predict if the original plan is too dangerous. There-
fore, model versioning combined with database querying are
economically relevant for subsurface management. A version
management system is, thus, necessary for any GSIS.

Almost all data collection/modification processes in geosciences
includes specific workflows. Each workflow involves collections of
actions; some executed by computers alone, some involving human
interaction with computers, and some only needing human action.
The data created should be shared among a collaborative working
group, but the data should not be published or shared with other
groups until the process is completed. In this case, database
versioning can be used to isolate groups of changes by creating a
version of each workflow. Database versioning can also support the
so-called “what-if” analyses by creating a new version, changing data
according to artificial scenarios, using the new version for an analysis,
and, when complete, remove the new version. GSIS can use database
versioning to prevent “lost-update” phenomena, i.e., using obsolete
data to update the data themselves. Database versioning creates a
template version for each check-out action. When check-in action
occurs, the database merges the template version into the main
database and removes the template version.

Database versioning was studied under various names, such as
long transactions in the ArcGIS product family (ESRI, 2013) and the
database workspace manager in the Oracle product (Oracle, 2012,
2013). Both ArcGIS and Oracle database workspace manager are
commercial products and only work with 2-dimensional objects
and scalar data.

www.sciencedirect.com/science/journal/00983004
www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2014.05.011
http://dx.doi.org/10.1016/j.cageo.2014.05.011
http://dx.doi.org/10.1016/j.cageo.2014.05.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2014.05.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2014.05.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2014.05.011&domain=pdf
mailto:lehai@mailserver.tu-freiberg.de
mailto:schaeben@tu-freiberg.de
mailto:jasper@informatik.tu-freiberg.de
mailto:IGo@geo.tu-freiberg.de
http://dx.doi.org/10.1016/j.cageo.2014.05.011

H.H. Le et al. /| Computers & Geosciences 70 (2014) 44-54 45

In recent years, source code control systems have been bene-
ficial for software developers. These systems manage (or control)
all versions of a source code file in a software project. Versions are
definite states of a source code which manifest important states of
the development of the software. Version control systems are used
to distinguish new levels of development from older ones and are
characterized by unique version numbers. On a fine-grained level,
revisions are used to keep track of incrementally different states of
digital information. Each version can be thought of as a set of
revisions of the source code file updated by a person. These
systems are also known by other names, including revision control
systems and version control systems. Well-known implementa-
tions are products such as CVS (2013), Git (2013), SVN (2013).
Source code control systems work with text format files. They use
a central storage, mainly a server computer, and many local copies,
mainly in the directory of each programmer’s computer. They
provide an update and a commit function to synchronize between
central storage and local copies. Two main functions of a source
code control system are comparing and merging two text files.
These systems do not work with databases or data structures
representing geological objects.

Data types tailored for geologic applications need to describe
the geometry and the properties of geologic objects. One widely-
used data structure is the triangulated mesh, which represents
geologic surfaces, for example, the boundaries of geologic objects.
Triangulated mesh is a discrete data model using a vector-based
representation of a surface created using irregularly distributed
nodes with 3D (XYZ) coordinates. The nodes are arranged in a
network of non-overlapping triangles, which create one surface
object. Because the triangulated mesh is flexible in mesh resolu-
tion and adaption to the geologic data, it is used to subdivide a
modeling domain into parts representing geologic bodies. It then
forms the basis for body and property modeling. Because the
triangulated mesh is the most prominent data structure for 3D
geologic modeling, we will concentrate on this data structure.

This paper presents a data model combined with functions to
manage versioned data in a database system. We present algo-
rithms to compare and merge two triangulated meshes. The
method is implemented in PostgreSQL (2013) and a gOcad plug-
in as a client module (GOCAD, 2013).

In the next section, we review related work. The algorithms are
described in Section 3. In Section 4, the implementation and the
testing of the software are presented. Finally, Section 5 is devoted
to the discussion and conclusions.

2. Related work

GSIS and 3D GIS have received a lot of attention from research-
ers (Apel, 2004; Breunig and Zlatanova, 2011; Gabriel et al., 2012;
GST, 2013; Le, 2013; Le et al., 2013). These studies did not address
version and revision management. The ArcGIS product family is
one of the most famous commercial GIS systems. ArcGIS Server
(including ArcSDE) enables end-users to manage enterprise geo-
databases in database management systems, such as Oracle, DB2,
and PostgreSQL, and to perform many useful server-side functions.
Versioned data are managed in ArcGIS Server through closed-code
ArcSDE, whose detailed design and algorithms are not published.
In addition to GIS, the Oracle database workspace manager enables
application developers and database administrators to manage
multiple versions of data in the same database. Versions of table
row values are grouped in different workspaces. End-users are
permitted to create new versions of data while maintaining a copy
of the old data. Catalog data and functions are placed in the
DBMS_WM package with a closed code. Oracle’s approach uses the
view mechanism and triggers in the database to make versioning

transparent to the user of the “production data” (Oracle, 2013). Our
solution is tailored to geoscience applications where researchers can
compare versions, e.g., in scientific studies. We use the more familiar
terms revision and version instead of the terms workspace and
version as used in the Oracle database workspace manager.

Im et al. (2012) proposed a framework to manage versions of
RDF (Resource Description Framework) data in relational data-
bases. This framework stores the original version and the deltas
between two consecutive versions. To improve the performance of
queries on a version, some sequences of deltas are aggregated and
redundantly stored and are called Aggregated Deltas. This frame-
work manages versions of a specific data structure, i.e., RDF triples,
and a version cannot be further changed when its child version
exists. Our method manages arbitrary tables, and versions can be
changed after its child version was created.

Concurrent Versions System (CVS), Subversion (SVN), and
source code management (Git) are versioned document manage-
ment systems, in which documents are mainly text files. The
common framework is server-based versioned file management
combined with local concurrent copies. The most important
functions are comparing two documents and merging (submitted)
versions. Our method follows these systems by comparing two
geological objects and merging versions of data.

Our comparison of two geological objects includes the mesh
comparison, which can be performed by a nearest neighbor
search, range search, and point location. Our algorithm is simpler
because it is defined in 3-dimensional Euclidean space (low
dimensionality) using Euclidean distance, and we only need to
find a coincident vertex. Hundreds of publications from research-
ers in a number of fields are related to nearest neighbor searching,
range searching and point location issues (Clarkson, 2006;
Dhanabal and Chandramathi, 2011). In general, a searching algo-
rithm includes two phases: preprocessing and querying. In the
preprocessing phase, some data structures are used to accelerate
the query phase. Famous among these data structures are, for
example, octree, k-d tree, AABB tree, locality-sensitive hashing
and many modifications of these (Bentley, 1975; CGAL, 2013; Datar
et al., 2004; Liaw et al., 2010; Samet, 1994; Zatloukal et al., 2002).
Until now, to the best of our knowledge, for a point set in 3-
dimensional Euclidean space and Euclidean distance, the best
solutions have, on average, the complexity of O(log(n)) querying
time (for each query), while preprocessing time and space com-
plexities are O(n log(n)). Our algorithm, which uses the k-d tree,
queries in time O(log(n)) in the worst case (for each query),
preprocesses in time O(n log(n)), and uses space O(n).

3. Methodology
3.1. Terminology

In this paper, we use terms that are defined as follows.

A version (or database version) is a user-defined name in the
database to define a working area. Versions in a database are
organized as a tree, where the root of the tree is the predefined
version, named “DEFAULT”, and all other versions are its descen-
dants. Working on a version by an end-user/application does not
disturb any others’ versions (isolation). Each database working
session of an end-user/application is on a specific version, named
working version of this session.

A revision is a group of changes. It is determined by an increasing
integer number. We will use term revision as an integer and a group
of changes. End-users/applications must not necessarily know about
revisions. A revision can, however, be assigned to a name to manage
a snapshot by end-users/applications. A version associates with some
revisions, but a revision associates with only one version. The revision

ISIf)rticles el Y 20 6La5 s 3l OISl ¥
Olpl (pawasd DYl gz 5o Ve 00 Az 5 ddes 36kl Ol ¥/
auass daz 3 Gl Gy V

Wi Ol3a 9 £aoge o I rals 9oy T 55 g OISl V/

s ,a Jol domieo ¥ O, 55l 0lsel v/

ol guae sla oLl Al b ,mml csls p oKl V7

N s ls 5l e i (560 sglils V7

Sl 5,:K8) Kiadigh o Sl (5300 0,00 b 25 ol Sleiiy ¥/

http://isiarticles.com/article/78767

