
The Journal of Systems and Software 103 (2015) 392–411

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Applying multiobjective evolutionary algorithms to dynamic software

product lines for reconfiguring mobile applications

Gustavo G. Pascual a,∗, Roberto E. Lopez-Herrejon b, Mónica Pinto a, Lidia Fuentes a,
Alexander Egyed b

a Department of Languages and Computer Science, University of Málaga, 29071 Málaga, Spain
b Institute for Systems Engineering and Automation, Johannes Kepler University Linz, Austria

a r t i c l e i n f o

Article history:

Received 1 December 2013

Revised 11 December 2014

Accepted 17 December 2014

Available online 3 January 2015

Keywords:

DSPL

Dynamic reconfiguration

Evolutionary algorithms

a b s t r a c t

Mobile applications require dynamic reconfiguration services (DRS) to self-adapt their behavior to the context

changes (e.g., scarcity of resources). Dynamic Software Product Lines (DSPL) are a well-accepted approach

to manage runtime variability, by means of late binding the variation points at runtime. During the sys-

tem’s execution, the DRS deploys different configurations to satisfy the changing requirements according to

a multiobjective criterion (e.g., insufficient battery level, requested quality of service). Search-based software

engineering and, in particular, multiobjective evolutionary algorithms (MOEAs), can generate valid configura-

tions of a DSPL at runtime. Several approaches use MOEAs to generate optimum configurations of a Software

Product Line, but none of them consider DSPLs for mobile devices. In this paper, we explore the use of MOEAs

to generate at runtime optimum configurations of the DSPL according to different criteria. The optimization

problem is formalized in terms of a Feature Model (FM), a variability model. We evaluate six existing MOEAs

by applying them to 12 different FMs, optimizing three different objectives (usability, battery consumption

and memory footprint). The results are discussed according to the particular requirements of a DRS for mobile

applications, showing that PAES and NSGA-II are the most suitable algorithms for mobile environments.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Mobile applications demand runtime reconfiguration services that

make it possible for them to self-adapt their behavior to the continual

contextual changes that occur in their environment (e.g., scarcity of

available resources) (Brataas et al., 2011; Capilla et al., 2014; Floch

et al., 2013; Mizouni et al., 2014). In some applications, the recon-

figuration can be made to maintain a certain quality of service (QoS)

the user requires, in others the reconfiguration can be made to offer

a personalized service to the user such as location-based services,

and even to provide the user’s personal suggestions based on the rec-

ognized activity and context (Mizouni et al., 2014). For instance, the

battery level of the mobile device may be a critical decision parameter

in changing the behavior of an application if the goal of this reconfig-

uration is to extend the lifespan of the battery and hence the device

connectivity (Mizouni et al., 2014).

One accepted approach to manage the runtime variability of appli-

cations is the Dynamic Software Product Line (DSPL) approach. DSPLs

∗ Corresponding author. Tel.: +34665372568.

E-mail addresses: gustavo@lcc.uma.es (G.G. Pascual), roberto.lopez@jku.at

(R.E. Lopez-Herrejon), pinto@lcc.uma.es (M. Pinto), lff@lcc.uma.es (L. Fuentes),

alexander.egyed@jku.at (A. Egyed).

produce software capable of adapting to changes, by means of bind-

ing the variation points at runtime (Hallsteinsen et al., 2008). This

requires to model the elements that could be adapted dynamically as

dynamic variation points and to generate, at runtime, the different

variants of the DSPL.

A runtime configuration is the set of values assigned to the dynamic

variation points, defining a member of the dynamic SPL. If a change

in the execution context is detected, then a reconfiguration service

should generate a new runtime configuration adapted to the new con-

text. Therefore, the reconfiguration service should be continuously

generating optimum runtime configurations adapted to the changing

context. But, which and how many objectives should be considered in

the generation of optimum configurations? In the case of mobile ap-

plications, multiple objectives should be taken into account like, loss

of network connectivity, drastic increase or reduction of the available

resources (e.g., battery, memory, CPU) or the user preferences about

quality of service (QoS). For instance, if a user wants to save battery

life in a mobile phone application, the reconfiguration service should

generate a configuration with a low battery consumption while trying

to keep the quality of service as high as possible.

Harman et al. (2014) show how Search-Based Software Engineer-

ing (SBSE) has been successfully applied by different approaches

to SPLs. In this paper, we demonstrate that SBSE, and in particular

http://dx.doi.org/10.1016/j.jss.2014.12.041

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2014.12.041
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2014.12.041&domain=pdf
mailto:gustavo@lcc.uma.es
mailto:roberto.lopez@jku.at
mailto:pinto@lcc.uma.es
mailto:lff@lcc.uma.es
mailto:alexander.egyed@jku.at
http://dx.doi.org/10.1016/j.jss.2014.12.041


G. G. Pascual et al. / The Journal of Systems and Software 103 (2015) 392–411 393

multiobjective evolutionary algorithms (MOEAs), can be used to solve

the problem of generating a valid configuration of a DSPL at run-

time. Runtime configurations of a DSPL are generated from a vari-

ability model, which specifies the common and the variable elements

of the dynamic product line. Most of DSPL approaches use Feature

Models (FMs) as the de facto standard to specify the commonalities

and variabilities of the product line in terms of features and con-

straints between them (Cetina et al., 2008; Dinkelaker et al., 2010;

Rosenmüller et al., 2011; Trinidad et al., 2007; White et al., 2007). In

this case, runtime configurations are defined in terms of features, and

are known as dynamic feature model configurations. This means that

the set of valid configurations that can be deployed during the execu-

tion of the application is then determined by the FM. Therefore, the

MOEA needs the FM that models the dynamic variation points. With

an FM available at runtime, an MOEA can generate valid variants of

the application adapted to the context changes.

In this paper, we explore the use of MOEAs to generate at runtime

the variants of the DSPL that fit the current execution context with

regard to several optimization criteria such as battery consumption

or usability. However, in order to be suitable for our reconfiguration

service, the employed algorithms should satisfy several requirements

such as:

1. Fast enough execution time. Reconfiguring the application should

not harm excessively the user experience. Furthermore, since we

are focusing on mobile devices, the response time of the optimiza-

tion algorithm should be of few seconds.

2. Generate only valid configurations. While in different kinds of ap-

proaches (Sayyad et al., 2013) configurations which do not satisfy

all the constraints can be useful, it is not appropriate for a recon-

figuration service to deploy invalid configurations of the appli-

cation. Therefore, the optimization algorithm should only return

valid configurations (i.e., configurations which satisfy all the con-

straints).

3. Multiobjective optimization. Generally, it is necessary to generate

configurations which are optimal regarding several criteria (e.g.,

battery consumption, usability).

4. Support for DSPLs in mobile applications. In DSPLs the number of

variation points that need to be managed is usually much lower

than in SPLs at design time. The reason is that in DSPLs only the

variations points that can change at runtime need to be considered.

Therefore, unlike design time SPLs, in DSPLs only a subset of the

FM variation points are considered; the rest of them are fixed

at design time. For instance, the variability model of the Linux

kernel (Lotufo et al., 2010) contains more than 6000 features, but

although some of these variation points can be decided at runtime

(e.g., I/O scheduler, CPU frequency governor), many points are

decided at design time because they depend on the hardware of

the target device (e.g., CPU architecture, CPU model, virtualization

support, cryptography hardware). Moreover, since our approach

focuses on the development of mobile applications, the DSPLs

managed in our approach would generally be even smaller than

DSPLs for desktop applications.

In this sense, several algorithms have been defined which are able

to obtain an optimal configuration of an FM according to a given op-

timization criteria (Benavides et al., 2010; Guo et al., 2011; Li et al.,

2012; Sayyad et al., 2013; Soltani et al., 2012; White et al., 2009a,

2009b). However, none of them are suitable for reconfiguration in

mobile devices mainly because they were proposed to optimize the

configuration of Software Product Lines (SPLs), being designed to be

used only at design time. Furthermore, only Sayyad et al. (2013) sup-

port multiobjective optimization (i.e., generating configuration which

are optimal regarding different criteria simultaneously), but not for

DSPLs.

Our experiments have been performed using six existing MOEAs

algorithms, which have been applied to 12 FMs in order to optimize

three objectives (usability, battery and memory). We have evaluated

these algorithms according to the requirements imposed by a recon-

figuration service for mobile applications and the results show that

PAES and NSGA-II are the most suitable MOEAs to be used in mobile

environments. They have the lowest execution time and, at the same

time, they satisfy the rest of requirements.

Following the Introduction, the rest of the paper is organized as

follows. The backgrounds to DSPLs and FMs are presented in Section 2.

After this, the related work is discussed in Section 3 and the realization

of our reconfiguration mechanism is described in Section 4. Then,

the experimental setup and the evaluations results are presented in

Sections 5 and 6 respectively. Finally, in Section 7 the evaluation

results and threats to validity are discussed, while our conclusions

and future work are described in Section 8.

2. Background

In this section we show the basics of DSPLs and FMs, which are

used in our approach to reconfigure mobile applications at runtime.

2.1. Dynamic software product lines

An SPL is “a set of software-intensive systems that share a com-

mon, managed set of features satisfying the specific needs of a par-

ticular market segment or mission and that are developed from a

common set of core assets in a prescribed way.”1 DSPLs redefine ex-

isting SPL engineering processes by moving them to runtime, with

the goal of ensuring that system adaptations lead the system to a

valid state. So, in SPLs the engineering processes are able to gener-

ate several systems of the same family at design time, but a DSPL is

considered a single system able to adapt its behavior at runtime.

The variability model is the central artifact for both SPLs and

DSPLs for formally specifying their commonalities and variabilities.

The engineering processes of SPLs generate products by selecting con-

crete values for the variable characteristics specified in the variability

model. This means that the SPL engineer binds the variation points at

design time considering the requirements of the intended product. In

contrast, in DSPLs the variability model describes the potential range

of variations that can be produced at runtime for a single product,

i.e., the dynamic variation points already defined in the introduction.

Then, as the set of dynamic variation points drive system adaptation,

they must be available to be consulted at runtime by a reconfigura-

tion service. But these dynamic variation points must make reference

to the system architectural components. So, in DSPLs the system ar-

chitecture supports all the possible adaptations defined by the set of

dynamic variation points (Hallsteinsen et al., 2008).

So, as part of a DSPL definition the engineer must identify: (i) the

range of potential adaptations supported by the system in terms of

architectural components; (ii) define an explicit representation of the

valid configuration space of the system; (iii) the context changes that

may trigger an adaptation, i.e., the criteria (which can have several

objectives) to initiate a reconfiguration or Decision Making Process

(DMP); and (iv) the set of possible reactions to context changes that

should be supported by the system. However, the way these issues

are implemented may differ greatly, as will be shown in Section 3.1.

Since for the majority of DSPLs the decision to initiate a recon-

figuration is made autonomously by the system (not by a human),

they are considered a good technology for developing self-adapting

systems such as mobile applications. In this sense, most of DSPL ap-

proaches share some common capabilities and goals with the Auto-

nomic Computing (AC) paradigm (IBM, 2005) such as the monitoring

of the environment and the generation of successive configurations.

1 http://www.sei.cmu.edu/productlines/

http://www.sei.cmu.edu/productlines/


http://isiarticles.com/article/78821

