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a b s t r a c t

This paper proposes a hybrid genetic algorithm (GA) to solve the capacitated location–routing problem.
The proposed algorithm follows the standard GA framework using local search procedures in the
mutation phase. Computational evaluation was carried out on three sets of benchmark instances from
the literature. Results show that, although relatively simple, the proposed algorithm is effective, pro-
viding competitive results for benchmark instances within reasonable computing time.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Location–routing problems (LRP) deal with the combination of
two types of decisions that often arise in logistics: the location of
facilities and the design of the distribution routes. Several LRP var-
iants have appeared in the literature [19,8], among which the capa-
citated location–routing problem (CLRP) has recently emerged as one
of the most addressed.

The CLRP can be defined on a complete and undirected graph
G¼ V ; Eð Þ with a vertex set V and an edge set E. V consists of a
subset J of m potential depots and a subset I ¼ V∖J of n clients. Each
client iA I has a non-negative demand di, to be satisfied only once,
and is to be assigned to a single depot jA J with capacity wj. The
shipment of clients’ demand from the assigned depot is carried out
by an unlimited fleet of homogeneous vehicles with capacity Q;
each vehicle returning to the departure depot at the end of the
route. The total demand of the clients assigned to each depot must
not exceed its capacity and the total demand satisfied by any
vehicle must not exceed Q . The following non-negative costs are
incurred: fixed cost f j when depot jA J has clients assigned and
must be opened; fixed cost F for each vehicle used; and traveling
cost cij each time edge i; jð ÞAE is in a vehicle route. The goal is to
determine the set of depots to open and the tracing of the routes
in order to minimize total costs.

The CLRP is NP-hard and only few instances with more than 100
clients have been solved to proven optimality [1,3,5,7] making

heuristic approaches often more suitable for solving real-life
instances. This paper proposes a simple but effective heuristic algo-
rithm for solving the CLRP, namely, a hybrid genetic algorithm (GA)
where local search procedures are used as mutation operators.

The remainder of this paper is organized as follows. Section 2
provides a brief review on the most recent heuristic algorithms
for the CLRP. The proposed evolutionary algorithm is detailed in
Section 3 and evaluated in Section 4. Finally, conclusions are drawn in
Section 5.

2. Literature review

Recent surveys on the LRP are the works by Lopes et al. [19],
Prodhon and Prins [26] and Drexl and Schneider [8]. In Lopes et al.
[19] heuristic approaches are classified according to the adopted
framework (how location and routing phases interact) and the
used method(s), compiling results of several heuristics for the
CLRP. Prodhon and Prins [26] and Drexl and Schneider [8] can be
seen as complementary surveys: the former emphasizing the CLRP,
detailing and comparing recent algorithms, and the latter focusing
on other LRP variants. Although most methods in the literature
follow a hierarchical framework and use tour construction and
improvement typically within metaheuristics, no clear conclusions
could be drawn on the best performing frameworks and methods.
The most recent and relevant approaches are mentioned hereafter.

Barreto et al. [2] presents a clustering based heuristic for
tackling the CLRP with no vehicle acquisition cost. Several clus-
tering methods are used to obtain the routing data and then a
facility location problem is solved with the collapsed routes.
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Marinakis and Marinaki [20] solved the same problem using a
bilevel GA.

Addressing the CLRP strictly as defined previously are the
following works.

Prins et al. [24] propose a constructive algorithm for the CLRP:
extended savings heuristic. The heuristic is randomized and used in a
greedy randomized adaptive search procedure (GRASP). The perfor-
mance of this dedicated constructive algorithm is worth noting, which
motivated further development, presented in Duhamel et al. [9],
where a similar GRASP is hybridized with evolutionary local search.

In Prins et al. [25] facility location (through Lagrangean
relaxation) and vehicle routing (using a granular tabu search) are
performed iteratively. The time required to obtain good solutions
is remarkable, mostly due to the effectiveness of granular tabu
search (GTS) in the routing phase [30]. Also using GTS are the
works by Escobar et al. [10] and Escobar et al. [11]: firstly in the
improvement phase of its hybrid heuristic; then within a variable
neighborhood search algorithm.

Other recent methods are by Yu et al. [32], with a simulated
annealing (SA) based heuristic; Hemmelmayr et al. [14], using an
adaptive large neighborhood search (ALNS) heuristic; Ting and
Chen [29] with an ant colony optimization (ACO) algorithm; and
Contardo et al. [6] slightly changing the GRASP by Prins et al. [24]
and combining it with an integer-linear program.

Looking at the methods’ performance, Escobar et al. [10] and
Ting and Chen [29] show similar performance concerning both
results and CPU times. These methods have been slightly improved
by Escobar et al. [11], which provides a good trade-off of results
and time to obtain them. The method by Contardo et al. [6] pre-
sents the best overall results for the benchmark instances from the
literature at the expense of significantly higher computing times.

Concerning genetic algorithms for the CLRP two approaches
can be found in the literature: a memetic algorithm with popu-
lation management [23] and a bilevel GA [20].

The memetic algorithm by Prins et al. [23] uses a fixed length
chromosome composed of a sequence of genes for the depots and
another for the clients, requiring a dedicated procedure for fitness
evaluation. As crossover may produce unfeasible offspring a repair
procedure is used. Depot configuration is only changed by cross-
over and local search is used for improving routing. The method
works on a small population of high quality solutions using a
population management procedure for ensuring diversity.

The bilevel GA [20] solves the CLRP in two levels: in the first,
solving the capacitated facility location problem; in the second, a
vehicle routing problem (VRP) is solved for each of the individuals.
Each individual in the population is a solution for the location
problem and crossover and mutation only occurs at the first level.
For obtaining the CLRP solution a VRP is solved in the second level
using expanding neighborhood search (ENS). A large population
and very few generations are used.

Both methods require efficient constructive algorithms for
obtaining the initial population.

3. Evolutionary algorithm

The metaheuristic presented here follows the standard GA fra-
mework hybridized with local search procedures. The proposed
algorithm shares some core principles with the hybrid GA by Prins
[22], with good results for the VRP; the main being the use of local
search as mutation operators. However, several new implementation
aspects were developed or adapted to effectively address the CLRP.
The most relevant are the chromosome representation and the
crossover and mutation operators. The main components are detailed
and the general structure of the algorithm is presented in the

following sections. The similarities of this framework with memetic
algorithms and scatter search are discussed in Prins [22].

Compared with other genetic algorithms in the CLRP literature,
the main advantages of the proposed approach are: an intuitive
chromosome representation, also allowing an easy fitness eva-
luation; an efficient constructive algorithm is not necessary; fea-
sible offspring provided by crossover; and a simple framework.

3.1. Chromosome representation

The chromosome in the proposed GA represents a complete
solution, i.e., the collection of routes. Both the route (gene) length and
the chromosome length are variable and depend on the number of
clients serviced and the number of routes in the solution. For
example, given a CLRP with 15 clients I¼{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15} and 4 possible depot locations J¼{16, 17, 18, 19}, the
chromosome representation of a solution is provided in Fig. 1. The
solution in the figure represents installing facilities 16 and 18, and
servicing the clients in the given order by four routes (vehicles).

The adopted representation, assuming solution feasibility, toge-
ther with the crossover operator (detailed in the following section),
allows obtaining feasible children solutions. Thus, the use of repair
methods to restore feasibility is avoided. Moreover, it allows a fast
evaluation of its fitness value Fitness Sð Þ: the total cost of solution S.
Note that higher quality solutions have smaller fitness values.

3.2. Crossover operator

The proposed crossover operator (inspired by an operator
proposed by Hosny and Mumford [15], for a VRP) tries to copy
complete routes from the parent to the child, thus will be named
route copy crossover (RCX). It operates by copying to the child a
random number of routes (between 1/3 and 2/3) from one of the
parents, and the remaining unvisited clients are placed in a relo-
cation pool following the original order in the other parent. The
clients in the relocation pool are then inserted in the child, in new
routes, and using the currently open depots (as long as capacity is
obeyed, randomly opening a new one otherwise). This preempts
the use of repair methods as child solutions are always feasible. An
example of the RCX is illustrated in Fig. 2.

In the example, assuming the first and third routes of Parent
1 are selected, both are copied to Child 1. The remaining clients not
yet included in Child 1 (shown underlined in Parent 2) are copied,
following their order of appearance, to the relocation pool.

The clients in the relocation pool are then used to form new
routes in Child 1, using the currently open depots (opening more
when depot capacity constraints are violated) and following the
sequence as long as vehicle (route) capacity is obeyed.

The second child is created similarly, using the parents in
reverse roles. The RCX allows inheriting some of the routes from
one parent while at the same time randomizing the building of the
child solution routes (yet still partially inheriting the structure of
the route from the other parent). Moreover, the operator promotes
solutions with few open depots and routes with little unused
capacity, two features often found in good solutions.

16 1 3 4 7 10 16
18 2 6 18
18 5 9 8 13 18
16 11 12 15 14 16

Fig. 1. Chromosome representation of a solution for the CLRP.
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