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This paper presents a comparative analysis of three versions of an evolutionary algorithm in which the

decision maker’s preferences are incorporated using an outranking relation and preference parameters

associated with the ELECTRE TRI method. The aim is using the preference information supplied by the

decision maker to guide the search process to the regions where solutions more in accordance with his/

her preferences are located, thus narrowing the scope of the search and reducing the computational

effort. An example dealing with a pertinent problem in electrical distribution network is used to

compare the different versions of the algorithm and illustrate how meaningful information can be

elicited from a decision maker and used in the operational framework of an evolutionary algorithm to

provide decision support in real-world problems.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction and motivation

The modeling of real-world problems generally requires the
consideration of distinct axes of evaluation of the merits of
potential solutions. Namely in engineering problems, aspects of
operational, economical, environmental and quality of service
nature are at stake. Therefore, mathematical models must expli-
citly address these multiple, incommensurate and often conflicting
aspects of evaluation as objective functions to be optimized.
Besides this ‘‘realistic’’ reason, multi-objective optimization models
enlarge the spectrum of potential solutions to be analyzed thus
enabling to grasp the trade-offs between the objective functions
that are relevant for decision purposes in order to reach a
satisfactory compromise solution that can be accepted as the final
outcome of the process. The essential concept in multi-objective
optimization is the one of non-dominated (efficient, Pareto opti-
mal) solutions, that is feasible solutions for which no improvement
in all objective functions is possible simultaneously; in order to
improve an objective function it is necessary to accept worsening
at least another objective function value. In real-world problems, a
high number of non-dominated solutions is likely to exist.

The use of Evolutionary Algorithms (EAs) to deal with multi-
objective optimization (MOO) models has gained an increasing

relevance due to their ability to work with a population of
individuals (solutions) that hopefully converges to the true non-
dominated front [1,2]. EAs are particularly suitable for tackling
hard combinatorial and/or non-linear models, as they are less
susceptible to the shape or continuity of the non-dominated front
than the classical (mathematical programming) optimization
methods. The rationale is that EAs deal with a population of
solutions and the aim is generally the characterization of a non-
dominated front. In this setting EAs incorporating techniques to
preserve the diversity of solutions (for a comprehensive depiction
of that front thus unveiling the trade-offs in different regions of
the search space) possess advantages compared with the use of
‘‘scalarizing’’ functions, in which a surrogate scalar function
aggregating the multiple objectives is optimized, as in traditional
mathematical programming approaches. However, it must be
noticed that, in real-world problems, this is, in general, ‘‘just’’ a
potential non-dominated front, classified as such because no
other solutions dominating it could be found but no theoretical
tools exist, which guarantee their true Pareto optimality.

Although it is the essential concept in MOO, the concept of
non-dominated solution is a poor one, in the sense that it lacks
discriminative power for decision recommendation purposes.
Non-dominated solutions are not comparable between them, so
no solution arises as the ‘‘final’’ one [3,4]. The rationalization of
the comparison between non-dominated solutions requires tak-
ing into account the expression of the decision maker’s prefer-
ences that somehow ‘‘enrich’’ the non-dominance relation [5].
These preferences represent a set of opinions, values, convictions
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and perspectives of reality, which configure a personal model of
the reality under study, which the decision maker (DM) leans on
to evaluate the different potential solutions [6–8].

Recent studies have shown that EAs based on the non-dom-
inance relation only are insufficient to deal with MOO models,
namely whenever the number of objective functions is large
[8–10]. In these situations, the non-dominance relation may
become inefficient in the selection of individuals for the next
generation and lead to a weak selective pressure [11,12]. As it is
referred to in [13], in these cases the progress of the population
tends to slow down and the time consumed in the search process
to find, at least, a good approximation to the non-dominated front
may become prohibitive. In addition to the problems related with
the selection procedure and the time consumed in the search
process, a major difficulty arises at the end of the optimization
process when it is necessary to choose a solution (or a small set of
solutions for further screening) having in mind its practical
implementation. In fact, in a real-world MOO model, the number
of solutions in the non-dominated front is generally very large due
to the conflicting nature of the objective functions, possibly its
number, and the frequent combinatorial nature of the problem [3].

The preference information supplied by the DM is of para-
mount importance to guide the search to the regions where
solutions more in accordance with his/her preferences are
located, thus narrowing the scope of the search to the regions of
interest and reducing the computational effort [7,14,15]. The
convergence to these regions is improved by incorporating
mechanisms for preference expression into the evolutionary
process. Therefore, techniques aimed at meaningfully capturing
and incorporating the DM’s preferences into the evolutionary
process should play a key role in real-world decision processes
based on complex (namely combinatorial) MOO models. The use
of weights to capture the relative importance of the multiple
objective functions by aggregating them in a single surrogate
function is one of the most popular techniques to include
preferences into an EA, which may be operationalized in diverse
manners. The underlying idea in these ‘‘scalarizing’’ approaches is
that the optimal solution to the single objective function is a non-
dominated solution to the multi-objective model. However,
attention shall be paid to the links between weights perceived
as importance coefficients and scaling coefficients. In [16] the
degrees of importance are defined in a way similar to the
linguistic ranking methods and are then converted into real
numbers that can be used as objective function weights in an
EA. Jim and Sendhoff [17] convert fuzzy preferences into interval-
based weights and use them in a dynamic weighting aggregation
method. Another well-known approach for the inclusion of
preferences into EAs consists in using the concept of goal attain-
ment or (minimization of a distance to a) reference point [18–20].
The knees of the Pareto-optimal front are considered by some
authors as usual regions of interest and the incorporation of
preferences is done to guide the search to those regions [15,21]. In
other works the non-dominance relation is replaced or modified
to include preferences into an EA [22–24].

The introduction of the preference expression parameters used
in the ELECTRE TRI method has revealed to be suitable both from
the point of view of meaningfulness of preference elicitation and
its use in the operational framework of an EA [25]. The different
versions of the EA developed (called EvABOR, Evolutionary Algo-
rithm Based on an Outranking Relation) include features of the
ELECTRE TRI method to guide the search according to the
preference information expressed and use an outranking relation
and the concept of classes of merit to generate the population for
the next generation. Preferences are herein represented by means
of technical parameters: weights, indifference, preference and
veto thresholds, a set of references profiles and a cutting level

(which may be perceived as the level of exigency of the classifica-
tion). The weights reflect the true importance of each objective
function (its ‘‘voting power’’) and are not scaling coefficients to
achieve some aggregate value. The veto threshold enables to
preclude situations often arising in real-world problems in which
full compensation between the objective function values is
undesirable or even unacceptable. The indifference and prefer-
ence thresholds enable to introduce a gradual preference relation.
The reference profiles define the classes of merit in which the
solutions are classified, as explained in the next section, and the
aim of the EvABOR approaches is to obtain solutions belonging to
the best class of merit as much as possible.

Broadly, the incorporation of the DM’s preferences may be
done before (a priori), during (progressive) or after (a posteriori)
the optimization process is carried out [5,6,26]. The incorporation
of preferences into the EA using the ELECTRE TRI method may
also be done in this manner. The a posteriori approach has been
implemented and the obtained results have been compared with
the first a priori version in [27]. The a posteriori approach
produced significantly worse results motivating the development
of the EvABOR algorithm in an a priori approach (having in mind a
possible progress to an interactive approach). The three versions
of EvABOR presented and compared in this paper have been
developed to analyze the symbiosis between the outranking and
the dominance relations in more detail with the aim to provide an
answer to a set of relevant questions for ensuring the effective-
ness of the search, such as: which must be the priority relation,
the dominance or the outranking relation? How can the algorithm
lead the evolutionary process to the region of interest (according
to the preferences elicited) more efficiently? Is it advantageous to
pass to the next generation all the solutions in the best class of
merit or is it preferable to use non-dominated solutions only?

The introduction and motivation to this work have been
presented in this section. In Section 2 the ELECTRE TRI method
is briefly described. The EA endowed with features of the ELECTRE
TRI method is presented in Section 3. The case study in electrical
distribution networks is described in Section 4. Some illustrative
results are analyzed in Section 5. Conclusions as well as some
possible directions for future research are provided Section 6.

2. The ELECTRE TRI method

The ELECTRE TRI method belongs to the ELECTRE (ELimination

Et Choix Traduisant la REalité) family of methods, which are based
on the construction and exploitation of an outranking relation with
respect to the problem to be tackled [28,29]. This is accomplished
by performing comparisons between a pair of alternatives (solu-
tions in the EA context) to establish preference, indifference or
incomparability on the basis of all relevant information.

The ELECTRE methods may be classified accordingly to the
type of the problem each one deals with: choice (to select the best
alternative, or a set of the best alternatives), sorting (to assign
each alternative to predefined ordered classes) and ranking
(to establish a partial or complete pre-order of the alternatives).
The ELECTRE TRI method is aimed at dealing with the sorting
problem. In choice and ranking problems the alternatives are
compared against each other, while in the sorting approach the
comparisons are made between the alternatives and a set of
alternatives defined by the DM (reference profiles). This aspect
presents two important advantages. Since the number of refer-
ence profiles is in general much lower than the number of
alternatives, significant fewer comparisons must be done. The
second aspect is concerned with the quality of the alternatives. In
the ranking problem the set of solutions is partially or completely
ordered; however, the quality of all solutions may not be very
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