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We revisit the classical resource allocation problem with general convex objective 
functions, subject to an integer knapsack constraint. This class of problems is fundamental 
in discrete optimization and arises in a wide variety of applications. In this paper, we 
propose a novel polynomial-time divide-and-conquer algorithm (called the multi-phase 
algorithm) and prove that it has a computational complexity of O (n log n log N), which 
outperforms the best known polynomial-time algorithm with O

(
n(log N)2

)
.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Consider the classical resource allocation problem which can be written as an integer programming problem as follows,

min
n∑

i=1

f i(xi), s.t.
n∑

i=1

xi = N, xi ∈ Z
+
0 , (1)

where Z+
0 denotes the set of nonnegative integers. We assume that each f i is a convex function defined over [0, N] and N

is a positive integer. This problem is of particular interest when N � n, i.e., the number of resource units far exceeds the 
number of players. The compact physical description of the problem is to allocate a fixed homogeneous pool of N resource 
units in an optimal way to n distinct players so as to minimize the total allocation cost. This problem is commonly referred 
to as the distribution of efforts problem.

This problem is perhaps the simplest nonlinear combinatorial optimization problem, which has been extensively studied 
in Computer Science and Operations Research literature. Gross [10] first developed a simple greedy algorithm with compu-
tational complexity O (N log n) to exactly solve this problem. The same type of greedy algorithm was then re-discovered by 
other researchers such as Fox [7] and Shih [20]. Subsequently, Katoh et al. [14] proposed an algorithm based on Lagrange 
multiplier methods, requiring O

(
n2(log N)2

)
time. To this date, the best known polynomial-time algorithm for this problem 

runs in O
(
n(log N)2

)
, which is due to the seminal work by Galil and Megiddo [8]. Many researchers have also focused on 

some variants of this basic problem (see, e.g., Dreyfus and Law [4], Weinstein and Yu [23], Dunstan [5]).
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The key theoretical contribution of our work is to propose a novel polynomial-time algorithm (called the multi-phase 
algorithm) that runs in O (n log n log N), which represents a significant improvement in computational complexity over the 
existing literature. The key idea of the what-we-call multi-phase algorithm is to find the optimal partition of the marginal 
costs into several groups in each phase of our algorithm, in order to achieve the tightest complexity bound. It turns out 
that the optimal number of partitions in each phase is �en� where e ≈ 2.71828 is the base of the natural logarithm and 
the ceiling function �x� is the smallest integer not less than x. Our algorithm is conceptually very simple and readily 
implementable in many practical settings.

This optimization problem finds various practical applications. In fact, our paper was primarily motivated by an important 
class of problems in inventory and supply chain management called the joint replenishment problem (JRP) (see, e.g., Khouja 
and Goyal [15] for an excellent review). More specifically, a warehouse manager wants to decide the total replenishment 
quantity and then allocate these ordered units to multiple (but non-identical) retailers. The problem studied in this paper 
serves as an important subroutine of the optimal allocation or distribution problem, given the total replenishment quantity 
in each replenishment cycle. Concisely speaking, the warehouse manager needs to determine how to allocate the fixed 
amount of goods to multiple retailers in order to minimize the sum of holding and backlogging costs (see the detailed 
model in Section 5).

Besides the aforementioned example, resource allocation problems are also abundant in many other application domains 
(see survey papers by Hochbaum [11] and by Patriksson [19]). Calinescu et al. [2] improved the quality of survey results with 
taking into account optimal resource planning. Federgruen and Groenevelt [6] applied greedy algorithms to network-based 
models. Veinott [21,22] provided procedures of choosing the amounts of a single product to produce in each of a finite 
number of time periods in order to minimize the production and inventory carrying costs over the periods. Also, Johnson 
[12] and Karush [13] established methods to determine the optimal production program over time of a given commodity 
to minimize the total costs. Zipkin [24] applied different algorithms to find the optimal allocation for portfolio selection 
problems. Lee and Pierskalla [16] presented a mass screening program for computing the optimal test choice and screening 
periods among a fixed testing budget. The optimization model is also used in the optimum allocation problem in stratified 
sampling (see, e.g., Neyman [17]) and the optimal allocation problem for software-testing resources (see, e.g., Ohtera and 
Yamada [18]).

The remainder of this paper is organized as follows. Section 2 recalls the simple algorithm and shows its complexity 
bound. In Section 3, by proving a key lemma, we present and analyze a two-phase algorithm which lays the foundation for 
our multi-phase algorithm. In Section 4, we propose the multi-phase algorithm, and then prove its computational complexity 
bound. Section 5 is devoted to the numerical studies of our proposed algorithm. Finally, we conclude our paper and point 
out future research directions in Section 6.

Throughout the paper, we use the notation �x	 and �x� frequently, where �x	 is defined as the largest integer value 
which is smaller than or equal to x; and �x� is defined as the smallest integer value which is greater than or equal to x. 
Additionally, we denote x+ = max{x, 0}.

2. Naive algorithm

To facilitate our discussion, we first present a naive algorithm that is conceptually very simple and natural. This motivates 
us to devise better strategies that ultimately lead to our proposed multi-phase algorithm.

For each i = 1, . . . , n, f i is a convex function defined over the interval [0, N]. Based on incremental methods, for x =
1, . . . , N , we define

gi(x) � � f i(x) = f i(x) − f i(x − 1)

to be the marginal cost for player i evaluated at integer point xi . Due to convexity of our cost functions, we have gi(1) ≤
gi(2) ≤ . . . ≤ gi(N). Let G be the set of all marginal costs, i.e.,

G � {gi(x) : i = 1, . . . ,n, and x = 1, . . . , N} .

Note that the cardinality |G| = nN . To facilitate the complexity analysis, we assume that each element in the set G has a 
distinct value, i.e., no two values in G are the same.

Remark. We remark that if this is not the case, we can readily perturb the set G by adding some arbitrarily small positive 
numbers, e.g., we choose a sufficiently small positive δ and define the modified set G̃ of marginal costs by

G̃ �
{

gi(x) � g̃i(x) + δ(i−1)N+x : i = 1, . . . ,n, and x = 1, . . . , N
}

.

This perturbation makes sure that gi(x) �= g j(y) for all i �= j or x �= y and at the same time preserving the ordering in 
the original set G . This type of δ-perturbation method is also used to avoid degeneracy in solving a linear program (see 
Bertsimas and Tsitsiklis [1]).
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