Posture and muscle activity of pregnant women during computer work and effect of an ergonomic desk board attachment

Geneviève A. Dumas a,⁎, Tegan R. Upjohn b, Alain Delisle c, Karine Charpentier a, Andrew Leger d, André Plamondon c, Erik Salazar e, Michael J. McGrath e

a Department of Mechanical and Materials Engineering, McLaughlin Hall, 130 Stuart Street, Queen’s University, Kingston, Ontario, Canada K7L 3N6
b School of Kinesiology and Health Studies, Physical Education Center, 69 Union Street, Queen’s University, Kingston, Ontario, Canada K7L 3N6
c Institut de Recherche Robert-Sauvé en Sante´ et en Se´curite´ du Travail, 505, boul. De Maisonneuve Ouest, Montréal, Québec, Canada H3A 3C2
d Center for Teaching and Learning, Queen’s University, Mackintosh Cory Hall, Queen’s University, Kingston, Ontario, Canada K7L 3N6
e Department of Obstetrics and Gynecology, Kingston General Hospital, Kingston, Ontario, Canada K7L 3N6

Article info
Article history:
Received 11 October 2007
Received in revised form 3 March 2008
Accepted 6 March 2008
Available online 9 May 2008

Keywords:
Pregnancy
Posture
Muscle activity
Computer work
Low back
Upper extremity

Abstract
The aims of this study were (a) to compare posture and muscle activity in the back and upper extremity of women in late pregnancy and non-pregnant controls, (b) to evaluate the effect of a concave “desk board” on the back and upper extremity of women in late pregnancy.

All participants completed a standard 20-min computer task under two conditions: (1) using a standard desk and (2) using a desk attachment board designed to support the forearms. Bilateral electromyography of the trapezius, multifidus and longissimus muscles and the right anterior deltoid and extensor digitorum muscles was recorded. Three-dimensional (3D) trunk and upper extremity posture was monitored. The participants, 12 pregnant and 18 non-pregnant women, were tested before and after 2 weeks of familiarization with the board in their workplace. Perceived discomfort was recorded before and after use of the board.

Results showed that pregnant women sat with a more upright posture than non-pregnant controls but the posture of their right arm was not different though the activity of the anterior deltoid muscle was higher. The pregnant women also reported more discomfort in the lower back and pelvis area. The desk attachment board increased muscle activity in the right trapezius and extensor digitorum, and decreased muscle activity in some back muscles. The desk attachment board may be a useful tool in reducing discomfort in the low back during computer work, but may have adverse effects on the upper extremities.

Relevance to industry: Many pregnant women perform computer work as their main duty or as re-assignment from heavier physical work. Increased joint loads put them at risk of musculo-skeletal disorders, particularly back pain. An attachment board providing arm support has a potential positive effect for the lower back, but it may have an adverse effect on upper extremities. Interventions using a similar device should carefully monitor both the back and upper extremities.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Many jobs now involve sitting at a computer for several hours, particularly in clerical and administrative occupations, occupations typically held by women and in which a large number of women are employed. In addition, data entry and other computer-based jobs are common work re-assignments for pregnant women whose normal responsibilities involve heavy manual work or other job-based risk factors. Computer work is not exempt from the risk of developing musculo-skeletal disorders (MSDs). In a survey of 72 pregnant women, Cheng et al. (2006) found that sitting was the most frequent problematic task at work because of factors such as getting tired, uncomfortable posture and excessive time in the same posture. This confirmed the results of a previous study (Dumas et al., 1995) where “sitting for long” came first with “standing for long” in a list of 28 functional limitations in relation to back pain. The score decreased substantially when the same participants were surveyed post-partum. Other authors (Hartvigsen et al., 2000) suggested that the occurrence of low-back pain (LBP) while sitting may be dependant on the specific task performed rather than due to sitting itself. Nicholls and Grieve (1992) found that pregnant women tended to lean forward to reach with
a trunk angle of 10° when sitting at a desk due to the increased
volume of the abdomen. This posture may cause pressure on the
abdomen, and higher activity in the back extensor muscles and in
the shoulder and arm muscles, which could lead to musculo-skel-
etal problems (Morrissey, 1998). These findings were confirmed by
Lee et al. (1999) in a study comparing posture of five pregnant
women and five non-pregnant controls. They analyzed the last 10
min of a 50-min sitting session, and found postural differences
between pregnant participants and controls. Pregnant participants
tended to hold the upper arm further away from the body, to lean
forward more and to have more hip extension than controls. In
a qualitative video study, Hirao and Kajiyama (1994) also
mentioned that it might be difficult for a pregnant woman to
maintain an appropriate visual distance from the screen without
leaning forward, a posture that should be avoided because it
compresses the abdomen. In contrast, Gilleard et al. (2002) found
no significant difference between posture during pregnancy and
post-partum in nine participants. However, the participants were
only sitting for a short period on a stool, not in a functional
situation.

Low-back disorders are not the only reported work-related
MSDs associated with computer work. More than 50% of workers
who use a computer for more than 3 h/week report musculo-
skeletal symptoms in the neck or upper extremities during the first
year on a new job (Gerr et al., 2002). Muscle pain in the neck/
shoulder area and the upper extremities is common among
computer workers, especially women (Oberg and Aström, 2000).
In fact, it has been reported that women were more likely to experi-
ence MSDs than were men (Gerr et al., 2002). In computer work,
neck and shoulder muscles must be activated in order to stabilize
the upper extremity segments to enable controlled typing and
mouse use. If there is no mechanical support for the forearms, many
upper extremity muscles must contract to support the weight of
the forearms (Takala, 2002). It appears therefore important to
reduce muscle activity during computer work. Moreover, for
pregnant women this is particularly important, as they have to
adapt quickly to continuously changing physical constraints that
can increase their level of fatigue during computer work.

Biomechanical load can be reduced by ergonomic change of the
workstation. One way is to introduce forearm support when using
both keyboard and mouse (Feng et al., 1997; Nevala-Puranen et al.,
2003; Visser et al., 2000; Wells et al., 1997; Fernandez et al., 1999).
Results from measurements over several years both in laboratory
and field studies showed that supporting the forearm on the table
helped to improve both postural and muscular response. A recent
study by Lee et al. (2002) found that muscle activity of the neck
muscles was reduced when using a computer workstation that provided
arm support. While EMG amplitude of the trapezius and deltoid
muscles seemed little affected by the type of workstation, EMG variability was higher when using a
workstation that provided forearm support on a height-adjust-
able work surface (A). This was interpreted as a positive effect, but,
for the same workstation (A), EMG amplitude for the extensor
digitorum muscle was found to be higher. Aaras et al. (1998, 2001)
performed a workplace intervention in which new tables and chairs
were installed. The new tabletop had a concave shape in the corner
to better accommodate the workers’ trunk and to provide support
for the forearms. The concave shape is interesting because it gives
the worker the option of supporting the forearms without being too
far from the keyboard and the monitor. The authors found a
reduction in back pain after the intervention. Another author
(Karlqvist, 1998) tested four models of worktables suitable for VDU
work (A–D). Interestingly, the models (C and D) that provided arm
support resulted in the lowest activity in the trapezius muscle.
Moreover, the “D” model had a square shape as opposed to
a concave shape, and enabled the worker to get closer to the
computer task. Furthermore, the “D” model had an adjustable table
slope, which was appreciated by most participants. In summary,
providing forearm support on the work surface seems to have
a positive effect for the shoulder muscles and may also reduce back
pain during computer work.

In the case of pregnant women, working at a computer work-
station for long periods of time may be particularly problematic
both for the back (flexed posture to reach past their larger
abdomen) and the shoulders and upper extremities if they are not
supported. A concave shape of the work surface, in addition to
providing support for the forearms, could be more appropriate for
a pregnant woman who may have difficulties moving close to the
workstation because of her physical constraints. A newly designed
desktop, the Workplace™ board (Life With Ease), formerly known
as the Butterfly board (Metamorphosis Design and Development
Inc.), looked particularly promising for this population, as it
provides forearm support and its concave shape is meant to allow
the worker to get close to the work surface and to promote the use
of the chair backrest. It also has a small forward slope and had not
yet been evaluated. Therefore the objective of this study was to
evaluate the effect of improving a conventional desk by adding
a concave “desk board” designed to provide arm support during
computer work on the back and upper extremity of women in late
pregnancy. A control group of non-pregnant women was included
for comparison. Posture and muscle activity in the back and upper
extremity were monitored for the two groups.

2. Methods

2.1. Study design

The study had a mixed design with two groups; a group of
participants in late pregnancy and a group of matched non-preg-
nant controls (group effect). The study evaluated the effect of two
different desk setups, workplace or standard (desk effect) on
muscle activity of eight selected upper extremity and back muscles
and on arm and trunk angles during a standardized computer task.
The participants were tested twice at a 2-week interval to evaluate
the effect of familiarization with the board (visit effect). At each
visit, all subjects were tested on both desks but in different testing
orders. A counterbalancing design was used to assign the desk
order that each subject would experience. Since the desk order
remained the same on both visits, subjects could only be assigned
to one of two conditions, therefore a counterbalancing design
seemed the most appropriate. Despite strong efforts to recruit
a large group of women with equal sample sizes, at the time of
completion, the study was short six pregnant women to even out
the sample size and variability between the groups, no special
measures were undertaken in the statistical analysis.

2.2. Participants

The pregnant group consisted of 12 women in their 32nd week
of pregnancy (±2 weeks) employed in jobs involving work at a VDU
for at least 15 h/week. A control group of 18 non-pregnant women
was used for comparison (Table 1). Controls were also employed in
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات