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Radix-3 fast algorithms for polynomial time frequency transforms
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a b s t r a c t

The polynomial time frequency transforms have been used as an effective tool to reveal

the polynomial-phase information by converting a one-dimensional polynomial-phase

signal in the time domain into a multi-dimensional output array in the frequency domain.

To significantly reduce the prohibitive computational complexity for dealing with high

order polynomial-phase signals, efficient fast algorithms are extremely important for any

practical applications. Based on radix-3 decomposition techniques, this paper presents

fast algorithms for any order of the polynomial-phase signals. It shows that the

computational complexity, except that for twiddle factors, of the radix-3 algorithm is

independent of the order of the polynomial time frequency transform. The proposed

algorithms are simple in concept and achieve significant savings on computational

complexity.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

Polynomial-phase signals (PPSs) have been used in
many applications, such as pulse compression radar
systems [1], synthetic aperture radar (SAR) imaging [2]
and mobile communications [3,4]. The ðr þ 1Þth order
polynomial time frequency transform (PTFT) is generally
defined as

Xðk0; k1; . . . ; krÞ ¼
XN0�1

n¼0

xðnÞWk0n
N0

Wk1n2

N1
. . .Wkrnrþ1

Nr

0pkipNi � 1; 0pipr (1)

where WN ¼ e�j2p=N , xðnÞ is the one-dimensional (1D)
input sequence of N0 points and Ni is the size of the ith
dimension of Xðk0; k1; . . . ; krÞ. In practice, it is often that
NjXNiXN0 for j4i40 to achieve a satisfactory accuracy
for parameter estimation [5]. It was shown that when
dimensional sizes are different, a simple decomposition
method can be applied to divide the overall computational
tasks into many smaller ones whose dimensional sizes are

the same [6]. Therefore, it is assumed in this paper that all
dimensional sizes of the PTFT are the same.

The PTFT of xðnÞ is equivalent to calculating
N1;N2; . . . ;Nr 1D fast Fourier transforms (FFTs) [7,8],
which is similar to the row–column method for multi-
dimensional DFTs. Although the algorithms of 1D FFT are
available for use, such computation of the PTFT still
requires a huge computational complexity. For a better
computational efficiency, fast quadratic-phase transform
[5] was proposed as an efficient algorithm for the 2nd
order PTFT to reduce the computational complexity by a
factor of log2 N compared with that needed by directly
using the 1D FFTs. The fast algorithm based on decima-
tion-in-time decomposition [9] reduces the overall com-
putational complexity by exploiting some properties of
the PTFT. However, further reduction on computational
complexity can be achieved because some properties of
the PTFT are not fully utilized. Recent work [6,10,11] was
reported to achieve a better computational efficiency for
an arbitrary order of the PTFT whose dimensional size is a
power of two.

It is noted that these reported fast algorithms support
sequence length being a power of two only. Fast
algorithms for other sequence lengths are also desired
for applications that need sequence lengths other than a
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power of two. It is well known that when the sequence
length is not supported by the available fast algorithms,
zero padding techniques have to be used to augment the
input sequence to the next available size supported by the
fast algorithm. This mismatch obvious wastes the com-
putational resources and decreases the computational
efficiency of the system. The availability of fast algorithms
based on radix numbers other than two is very useful to
minimize the possibility and the degree of the mismatch
between the input sequence length and the transform
sizes supported by the fast algorithm. Fast algorithms for
discrete Fourier transform based on radices other than the
power of two were reported in the literature (see [7,8], for
example). Because the fast algorithms for PTFT are
developed in the last few years only, there has been no
reported fast algorithms that are specially designed for
sequence lengths that are not a power of two.

This paper presents methods of efficiently decompos-
ing the PTFT for any order of the PPSs whose dimensional
size has a factor of a power of three. The proposed
algorithm is general enough for dealing with any order of
the PTFTs, has the regular computational structure, and
also obtains a very good computational efficiency com-
pared with most reported fast algorithms. By combining
other factors in the sequence lengths, it shows that the
proposed fast algorithm can be used to efficiently support
many different sequence lengths. Similar to the develop-
ment of fast algorithms for the discrete Fourier transform,
the periodic and symmetric properties of the transform
kernel are used for the design of fast PTFT algorithms.
However, the PTFT has its unique properties to be used for
minimizing the computational complexity, which will be
demonstrated in the following sections.

The rest of this paper is organized as follows. The next
section presents the radix-3 algorithms for the 3rd order
PTFTs. In particular, details are presented for reusing the
partially computed results to minimize the required
computational complexity. With understanding of the
fast algorithm for the 3rd order PTFT, Section 3 presents
the radix-3 algorithm for any arbitrary order of PTFTs. In
Section 4, the computational complexities required by the
proposed algorithm are also analyzed and compared with
other reported ones. Section 5 presents the conclusions.

2. Fast algorithm for the 3rd order PTFT

The 3rd order PTFT of a 1D length-N input sequence
xðnÞ is defined as

Xðk0; k1; k2Þ ¼
XN�1

n¼0

xðnÞWk0nþk1n2þk2n3

N (2)

where WN ¼ e�j2p=N , and ki ¼ 0;1; . . . ;N � 1 for i ¼ 0, 1 and
2. When N ¼ M � 3p, where p41 and M is a positive
integer, it can be easily verified, by using the periodic
property of WN , that the computation task defined in (2)
can be expressed as

Xð3k0 þ l0;3k1 þ l1;3k2 þ l2Þ

¼
XN�1

n¼0

xðnÞW ð3k0þl0Þnþð3k1þl1Þn
2þð3k2þl2Þn

3

N

¼
XN�1

n¼0

xðnÞWl0nþl1n2þl2n3

N Wk0nþk1n2þk2n3

N=3 (3)

where 0pk0; k1; k2pN=3� 1 and li 2 f0;1;2g for i ¼ 0;1,
and 2. When l0 ¼ l1 ¼ l2 ¼ 0, we have

Xð3k0;3k1;3k2Þ ¼
XN=3�1

n¼0

X2

m¼0

x nþ
mN

3

� �( )

�Wk0nþk1n2þk2n3

N=3 (4)

which is a 3rd order length-ðN=3Þ PTFT. For other
combinations of l0; l1 and l2, (3) can be rewritten into

Xð3k0 þ l0;3k1 þ l1;3k2 þ l2Þ

¼
XN=3�1

n¼0

X2

m¼0

x nþ
mN

3

� �(

�Wl0ðnþmN=3Þþl1ðnþmN=3Þ2þl2ðnþmN=3Þ3

N

)

�Wk0nþk1n2þk2n3

N=3 (5)

When N43, (5) can be simplified, by using the periodic
property of WN , into

Xð3k0 þ l0;3k1 þ l1;3k2 þ l2Þ

¼
XN=3�1

n¼0

xðnÞWl0nþl1n2þl2n3

N þ x nþ
N

3

� ��

�Wl0ðnþN=3Þþl1ðnþN=3Þ2þl2ðnþN=3Þ3

N

þ x nþ
2N

3

� �
Wl0ðnþ2N=3Þþl1ðnþ2N=3Þ2þl2ðnþ2N=3Þ3

N

�

�Wk0nþk1n2þk2n3

N=3 (6)

¼
XN=3�1

n¼0

xðnÞWl0nþl1n2þl2n3

N þ x nþ
N

3

� ��

�Wl0ðnþN=3Þþl1ðn
2þ2N=3Þþl2n3

N

þ x nþ
2N

3

� �
Wl0ðnþ2N=3Þþl1ðnþ4N=3Þþl2n3

N

�

�Wk0nþk1n2þk2n3

N=3 (7)

Eq. (7) is obtained from (6) after eliminating the terms, in
ðnþ iN=3Þ2 and ðnþ iN=3Þ3 for i ¼ 1 and 2, that are wholly
divisible by N. Therefore, (7) can be further expressed as

Xð3k0 þ l0;3k1 þ l1;3k2 þ l2Þ

¼
XN=3�1

n¼0

xðnÞ þ x nþ
N

3

� �
W ðl0þ2l1nÞN=3

N

�

þx nþ
2N

3

� �
W ð2l0þl1nÞN=3

N

�

�Wl0nþl1n2þl2n3

N Wk0nþk1n2þk2n3

N=3

¼
XN=3�1

n¼0

xðnÞ þ x nþ
N

3

� �
W ðl0þ2l1nÞN=3

N

�

þx nþ
2N

3

� �
W�ðl0þ2l1nÞN=3

N

�
Wl0nþl1n2þl2n3

N

�Wk0nþk1n2þk2n3

N=3

¼
XN=3�1

n¼0

½u3ðn; l0; l1; l2ÞW
l0nþl1n2þl2n3

N �Wk0nþk1n2þk2n3

N=3

(8)
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