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a b s t r a c t

By using the brute force algorithm, the application of the two-dimensional two-sample
Kolmogorov–Smirnov test can be prohibitively computationally expensive. Thus a fast
algorithm for computing the two-sample Kolmogorov–Smirnov test statistic is proposed to
alleviate this problem. The newly proposed algorithm is O(n) times more efficient than the
brute force algorithm, where n is the sum of the two sample sizes. The proposed algorithm
is parallel and can be generalized to higher dimensional spaces.

© 2016 Elsevier B.V. All rights reserved.

1. A fast algorithm for one-dimensional Kolmogorov–Smirnov test

Given two continuous probability distribution functions F 1 and F 2 in one-dimensional space, consider the hypothesis
test problem

H0 : F 1
= F 2 vs. Ha : F 1

≠ F 2 (1)

based on the samples {X1
i }

n1
i=1 and {X2

j }
n2
j=1 from the respective distributions. The classical Kolmogorov–Smirnov test uses

the maximum difference of the empirical distribution functions (or cumulative frequency functions) at the observed values.
Specifically, let F k

nk (k = 1, 2) be the empirical distribution function based on the sample {Xk
t }

nk
t=1, that is,

F k
nk(x) =

#{t : Xk
t ≤ x, 1 ≤ t ≤ nk}

nk
, ∞ < x <∞, (2)

where # means ‘‘the number of’’, then the Kolmogorov–Smirnov test statistic DKS is computed as (up to a multiple)

DKS = max{ max
1≤i≤n1

|F 1
n1(X

1
i )− F 2

n2(X
1
i )|, max

1≤j≤n2
|F 1

n1(X
2
j )− F 2

n2(X
2
j )|}. (3)

The value of DKS is often computed by a brute force algorithm, which simply counts the number of sample values that are
less than X1

i or X2
j for each i = 1, 2, . . . , n1 and j = 1, 2, . . . , n2. The number of comparisons needed by the brute force

algorithm is O(n2), where n = n1 + n2.
However, there exists a faster algorithm. Let L be the least common multiple of n1 and n2, d1 = L/n1, d2 = L/n2, and let

{X0
(t) : 1 ≤ t ≤ n} = {X0

(1) ≤ X0
(2) ≤ · · · ≤ X0

(n)} (4)
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be the pooled sample arranged ascendingly. (Throughout this paper we assume all the observed values have no ties when
necessary.) Define

ht = L× [F 1
n1(X

0
(t))− F 2

n2(X
0
(t))], 0 ≤ t ≤ n. (5)

The value of h0 is set to be 0. The reader can easily verify the following recurrence:

ht =


ht−1 + d1 if X0

(t) = X1
i for some i,

ht−1 − d2 if X0
(t) = X2

j for some j.
(6)

See Burr (1963), Hájek and Šidàk (1967) and Xiao et al. (2007). The value of the Kolmogorov–Smirnov test statistic is the
maximum value of |ht |/L over 1 ≤ t ≤ n:

DKS = max
0≤t≤n
|ht |/L. (7)

If the quick sort method is used, this algorithm only needs O(n log2 n) comparisons (Hoare, 1961), which is O(n) times more
efficient than the brute force algorithm. In addition, the use of L even speeds up the algorithm since all the intermediate
results are integers.

2. Generalization to two-dimensional spaces

The generalization of the Kolmogorov–Smirnov test to high dimensional probability distributions is a challenge. To
generalize the Kolmogorov–Smirnov test to two-dimensional space, Peacock (1983) proposed a procedure which makes
the use of four (rather than just one) pairs of cumulative frequency functions. Denote the two given samples in a plane by
{(Xk

i , Y
k
i )}

nk
i=1, k = 1, 2, respectively, the four pairs of cumulative frequency functions used by Peacock’s test are given by

F k
++

(x, y) = #{i : Xk
i > x, Y k

i > y, 1 ≤ i ≤ nk}/nk, (8)

F k
+−

(x, y) = #{i : Xk
i > x, Y k

i ≤ y, 1 ≤ i ≤ nk}/nk, (9)

F k
−+

(x, y) = #{i : Xk
i ≤ x, Y k

i > y, 1 ≤ i ≤ nk}/nk, (10)

and

F k
−−

(x, y) = #{i : Xk
i ≤ x, Y k

i ≤ y, 1 ≤ i ≤ nk}/nk, (11)

where ∞ < x, y < ∞ and k = 1, 2. Let {X0
t : t = 1, 2, . . . , n} be the pooled data set consisting of the values of

the X-components of the given samples and {Y 0
t : t = 1, 2, . . . , n} the pooled data set consisting of the values of the

Y -components of the given samples. Define

D++
def
= max

1≤s≤n, 1≤t≤n
|F 1
++

(X0
s , Y 0

t )− F 2
++

(X0
s , Y 0

t )|, (12)

D+−
def
= max

1≤s≤n, 1≤t≤n
|F 1
+−

(X0
s , Y 0

t )− F 2
+−

(X0
s , Y 0

t )|, (13)

D−+
def
= max

1≤s≤n, 1≤t≤n
|F 1
−+

(X0
s , Y 0

t )− F 2
−+

(X0
s , Y 0

t )|, (14)

and

D−−
def
= max

1≤s≤n, 1≤t≤n
|F 1
−−

(X0
s , Y 0

t )− F 2
−−

(X0
s , Y 0

t )|. (15)

Peacock’s test is then defined as

D2DKS = max{D++, D+−, D−+, D−−}. (16)

The test is often performed by a brute force algorithm and its application is very expensive in terms of computing time
unless the sample sizes n1 and n2 are very small. Indeed, to compute the value of D−−, we need to compute the value of
the difference of the cumulative frequency functions F 1

−−
and F 2

−−
at all the n2 pairs (Xs, Yt), Xs and Yt being coordinates

of any pairs in the given samples. It will need O(n) comparisons to compute the value of the difference of the cumulative
frequency functions F 1

−−
and F 2

−−
at a single point. Thus, it will take O(n3) comparisons to compute the value of D−−. Similar

conclusions can be made for D++, D+−, D−+.
To alleviate the problem, Fasano and Franceschini (1987, F&F, for short) revised Peacock’s test by comparing the

cumulative frequency functions at the observed sample points only, so the number of comparisons needed is only O(n2).
The F&F test is widely used in practice. But it is a variant of Peacock’s test, a different approach in essence.

In fact, there exists a fast algorithm for evaluating the value of Peacock’s test statistic. Denote by {(X ′(t), Y
′
t ) : 1 ≤ t ≤ n}

the pooled sample sorted ascendingly by the values of the X-components of the data points, and by {(X ′t , Y
′

(t)) : 1 ≤ t ≤ n}
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