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a b s t r a c t

The application of ‘‘concentration’’ steps is the main principle behind Forgy’s k-means
algorithm and the fast-MCD algorithm. Despite this coincidence, it is not completely
straightforward to combine both algorithms for developing a clustering method which
is not severely affected by few outlying observations and being able to cope with non
spherical clusters. A sensible way of combining them relies on controlling the relative
cluster scatters through constrained concentration steps. With this idea in mind, a new
algorithm for the TCLUST robust clustering procedure is proposed which implements such
constrained concentration steps in a computationally efficient fashion.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

It is easy to realize that there are clear relations between Forgy’s k-means algorithm (Forgy, 1965) and the fast-MCD
algorithm (Rousseeuw and van Driessen, 1999). These two widely applied algorithms play a clear key role in cluster
analysis and in robust statistics, respectively. The connection between them mainly refers to the application of the so-
called ‘‘concentration’’ steps. Roughly speaking, in these concentration steps, the closest observations to a given center are
considered in order to update this center estimate, such that the algorithm searches for regions with a high concentration
of observations.

A great drawback when using the k-means method is that it ideally searches for spherically scattered clusters with
similar sizes. Further, the presence of a certain fraction of outlying observations could negatively affect its performance (see,
e.g., García-Escudero et al., 2010).

Under the previous premises, it seems quite logical to try to combine the clustering ability of k-means with the ability to
robustly estimate covariance structures provided by the fast-MCD algorithm.

The trimmed k-means algorithm (García-Escudero et al., 2003) can be seen as a simple combination of k-means and fast-
MCD algorithms, where spherical clusters are still assumed. In each concentration step, the proportion α of themost remote
observations (considering Euclidean distances) to the previous k centers are discarded. Subsequently, k new centers are
obtained by using the groupmeans of the non-discarded observations. Note that the approach simplifies to the well-known
Forgy’s k-means algorithm when the trimming level α is set to 0. More information on the trimmed k-means approach can
be found in Cuesta-Albertos et al. (1997) and García-Escudero and Gordaliza (1999).
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It is also a logical step to think about the trimmed k-means algorithm but considering Mahalanobis distances (xi −

mj)
′S−1

j (xi − mj) (as the fast-MCD algorithm does) instead of Euclidean distances. In this case, the centers mj and scatter
matrices S j for j = 1, . . . , k would be updated by computing sample means and sample covariance matrices of the non-
discarded observations assigned to each group. Unfortunately, this ‘‘naive’’ combination of algorithms does not provide
sensible clustering results, since large clusters tend to ‘‘eat’’ smaller ones. This problemwas already noticed inMaronna and
Jacovkis (1974) in the untrimmed case (α = 0).

For avoiding this drawback, additional constraints are introduced,which limit the difference between the cluster scatters.
In fact, many well-known clustering methods implement (implicitly and explicitly) such constraints. For example, the
k-means method assumes the same spherical scatter for all the clusters.

Hathaway (1985), in a pioneering work on the mixture fitting framework, proposed constraining the relative differences
between cluster scatters through a constant c that controls the strength of the constraints. With this idea in mind, García-
Escudero et al. (2008) introduces the TCLUST method which is based on controlling the relative sizes of the eigenvalues of
the cluster scatter matrices.

The TCLUST method has good robustness behavior and nice theoretical properties (the existence of solutions for both
sample andpopulation problems, togetherwith the consistency of sample solutions to population ones). Unfortunately, from
a computational viewpoint, solving the TCLUST problem is not an easy task. Although an algorithm for solving this problem
was given in García-Escudero et al. (2008), the most critical issue there was how to enforce the eigenvalue ratio constraints.
This is clearly its computational bottle-neck because a complex optimization problemmust be solved in each concentration
step. To be more precise, a maximization of a (k × p)-variate function with


k×p
2


constraints needs to be solved (k stands

for the number of clusters and p for the data dimension). This makes the algorithm computationally unfeasible even for
moderate values of k and/or p.

In this work, we present an algorithm for implementing the constrained concentration steps, which clearly speeds up
the previous TCLUST algorithm andmakes it computationally feasible for practical applications. This algorithm only requires
the evaluation of a not very complex function 2pk + 1 times in each concentration step.

The proposed algorithm can be seen as a Classification EM algorithm (Schroeder, 1976; Celeux and Govaert, 1992) and,
more generally, as a generalized k-means algorithm (Bock, 2007). Note that the proposed algorithm allows to exactly solve
the (constrained)maximization step,which forces the trimmed likelihood target function to increasemonotonically through
the iterations.

An implementation of the algorithm described in this work is available through the R package tclust available at
http://CRAN.R-project.org/package=tclust. A description of how this R package can be used in practical applications can
be found in Fritz et al. (2012). In this work, we detail the algorithms internally applied by this package.

The methodology behind the discussed approach is explained in Section 2, while the algorithm is presented in Section 3.
Section 4 contains a brief simulation study, investigating the performance of the algorithm and it is compared to other
closely related ones in Section 5. Section 6 explains how this algorithm allows the practical application of exploratory tools
which help us to decide on the number of clusters and the trimming level. Section 7 finally presents concluding thoughts.

2. Constrained robust clustering and TCLUST

Given a sample of observations {x1, . . . , xn} in Rp and φ(·; µ, Σ), the probability density function of a p-variate normal
distribution with mean µ and covariance matrix Σ, we consider the following general robust constrained clustering problem
for a fixed trimming level α:

Search for a partition R0, R1, . . . , Rk of the indices {1, . . . , n} with #R0 = ⌈nα⌉, centersm1, . . . ,mk in Rp, symmetric
positive semidefinite p×p scattermatrices S1, . . . , Sk andweights p1, . . . , pk with pj ∈ [0, 1] and

k
j=1 pj = 1, which

maximizes
k

j=1


i∈Rj

log

pjφ(xi;mj, S j)


. (2.1)

Depending on the constraints imposed on the weights pj and on the scatter matrices S j, the maximization of (2.1) for
α = 0 leads to well established clustering procedures. For instance, assuming equal weights p1 = · · · = pk and scatter
matrices S1 = · · · = Sk = σ 2I with I being the identity matrix and σ > 0 yields the k-means method. The determinantal
criterion introduced by Friedman and Rubin (1967) is obtained when assuming p1 = · · · = pk and S1 = · · · = Sk = S with
S being a positive definite matrix. In general, the ‘‘likelihood’’ in (2.1) when α = 0 and p1 = · · · = pk is often referred to as
the Classification-Likelihood (see, e.g., Scott and Symons, 1971). The use of (2.1) assuming different weights pj goes back to
Symons (1981) and Bryant (1991) and is also known as the penalized Classification-Likelihood criterion.

Trimmed alternatives to the previously commented approaches can be constructed by introducing a trimming level
α > 0 to (2.1), which yields ‘‘trimmed likelihoods’’. This way, for instance, the trimmed k-means method in Cuesta-
Albertos et al. (1997) extends k-means and the trimmed determinantal criterion in Gallegos and Ritter (2005) extends the
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