
Discrete Optimization

A faster algorithm for 2-cyclic robotic scheduling with a fixed robot route
and interval processing times

Vladimir Kats a,1, Eugene Levner b,c,⇑
a Institute for Industrial Mathematics, 57/10 Klazkin St., Beer-Sheva 84641, Israel
b Holon Institute of Technology, Holon 58102, Israel
c Bar Ilan University, Ramat Gan 52900, Israel

a r t i c l e i n f o

Article history:
Received 31 May 2010
Accepted 2 October 2010
Available online 29 October 2010

Keywords:
Efficient algorithms
Graph-theoretic models
Cyclic scheduling
Polynomial models
Robotic scheduling

a b s t r a c t

Consider an m-machine production line for processing identical parts served by a mobile robot. The prob-
lem is to find the minimum cycle time for 2-cyclic schedules, in which exactly two parts enter and two
parts leave the production line during each cycle. This work treats a special case of the 2-cyclic robot
scheduling problem when the robot route is given and the operation durations are to be chosen from pre-
scribed intervals. The problem was previously proved to be polynomially solvable in O(m8log m) time.
This paper proposes an improved algorithm with reduced complexity O(m4).

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Consider a robotic flowshop line consisting of m workstations
(‘‘machines”) processing identical parts, in which a single robot
transports the parts between the stations and loads/unloads the
parts. The robot repeats its moves periodically, such a production
process is called cyclic. The periodic sequence of operations per-
formed by the robot is called a schedule and its duration is the cycle
time.

A cyclic sequence in which during each cycle exactly K parts en-
ter the line and K parts leave the line is called a K-cyclic or K-degree
schedule. Notice that each robot’s move from one workstation to
another appears K times during each cycle. At the end of the cycle
the line returns to its original state. The mean cycle time is the cycle
time divided by K. The throughput rate of the production process is
the average number of finished parts produced per unit of time; it
is the inverse of the mean cycle time. The cyclic scheduling prob-
lem is to specify a sequence of robot moves and the processing
times so that to maximize the throughput rate, or, equivalently,
to minimize the mean cycle time.

Cyclic robot scheduling problems have been intensely studied
over the past decades. Several surveys (see e.g. Crama et al.,

2000; Dawande et al., 2005; Hall, 1999) and a recent monograph
by Dawande et al. (2007) bring together main algorithmic results.
The multi-cyclic schedules may have a higher throughput rate than
the best 1-cyclic ones, as has been reported by many authors, see
e.g. Blazewicz et al. (1989), Levner et al. (1996), Crama and
Klundert van de (1997), Finke and Brauner (1999), Che et al.
(2002, 2003), Chu (2006), Che and Chu (2009). Several fast algo-
rithms have been developed for the 2-cyclic scheduling problem
with constant processing times (Che et al., 2002, 2003; Chu, 2006;
Kats and Levner, 2009). In a more general situation, when process-
ing times are chosen from prescribed intervals, the methods
derived for constant times are not applicable. We consider the
2-cyclic scheduling problem with interval data in the case when
the robot route is given in advance. Such a problem type – in which
the robot route is fixed, has theoretical and practical importance on
its own; moreover, it can be used as an estimating sub-problem in
branch-and-bound computational schemes for solving a more gen-
eral scheduling problem – in which the best robot route is to be
found. The interested reader can find more information on practi-
cal applications of this problem in Lei (1993), Ioachim and Soumis
(1995), Chen et al. (1998), and Kats et al. (2008).

The case of interval data is important in practice because in
such a case constraints of the production model are more flexible.
In the present paper, we propose a new algorithm of complexity
O(m4) for this problem, thus improving the earlier O(m8log m)-time
geometric algorithm developed in Kats and Levner (2010). In the
next section we describe the problem. In Section 3 we reduce it
to a parametric critical path problem in a graph. In Sections 4
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and 5 we present the parametric sub-algorithm and analyze its
properties. In Section 6 we describe a new algorithm and estimate
its complexity. Section 7 concludes the paper.

2. Problem description

A robotic production line has two types of resources - worksta-
tions and robots. Consider a flow-line having m sequential work-
stations S1, . . . ,Sm. Let S0 and Sm+1 denote the input and output
stations, respectively. The line processes identical parts. The order
of operations and movements of each part along the stations is rep-
resented by the sequence S = (S0,S1, . . . ,Sm,Sm+1), where the kth
component indicates that the kth operation is performed in station
Sk, k = 0, . . . ,m + 1.

A robot is used to transport parts between various stations and
load/unload them. As said above, we assume that the robot’s route
is given. In the 2-cyclic schedules, the identical parts are loaded
into the line at time . . . �rT,�rT + T1, . . . ,�2T,�2T + T1,�
T,�T + T1,0,T1,T,T + T1,2T, . . . ,rT + T1, (r + 1)T, . . . , where T1 < T and
r is an integer. The parts loaded at time rT (respectively, at time
rT + T1), r = 0,±1,±2, . . . are called the parts of Class 1 (respectively,
the parts of Class 2). Exactly two parts enter and two parts leave
the line during each cycle. T is called the cycle time, T1 is called
the semi-cycle time; they are the unknowns of our scheduling prob-
lem whose optimal values have to be found.

Let us describe a robot cyclic route, denoted by R. Since the
loaded robot always moves from a station at which it takes a part
to the next station in the sequence S, the route R can be presented
compactly as a 2(m + 1)-long sequence: R = (SR(0),SR(1),SR(2), . . . ,
SR(m),SR(m+1), . . . ,SR(2m+1)), or, simply, R = ([0], [1], . . . , [m], [m+1],
. . . , [2m+1]), using, briefly, [k] instead of SR(k).

Consider interval [0,T). Within this interval the robot performs
twice all its operations; it starts at time t = 0 with loading a part
from the input station S0, so [0] = 0. The sequence (0, [1], . . . ,
[m], . . . , [2m+1]) is a permutation of the workstation numbers
0,1, . . . ,m in which each number is repeated twice.

The scheduling problem must satisfy the following conditions:

(C1) After being loaded at workstation Sk, a part stays there for
time pk, where Lk 6 pk 6 Uk, and Lk and Uk are given con-
stants, k = 1, . . . ,m. Time pk is called processing time; Lk and
Uk define interval [Lk, Uk] of possible values of pk, k = 1, . . . ,m.

(C2) The loaded robot requires time dk to move a part from sta-
tion Sk to Sk+1, k = 0, . . . ,m.

(C3) The unloaded robot requires time rij to run from Si to Sj,
1 6 i 6m+1, 0 6 j 6m.

(C4) After a part is processed in a workstation, it must be
unloaded and moved immediately by the robot to the next
workstation in S and then be processed on it without pause;
this requirement is called the no-wait condition. In this case,
processing time and residence time (the latter term denotes
time spent by a part on a machine) coincide. This and other
types of the no-wait robotic cells are discussed in detail in
Dawande et al. (2007).

The decision variables in the problem are:

pk = part’s processing time at station Sk, for k = 1, . . . ,m;
tk (and, respectively, t0k) = the completion time of the operation
on workstation Sk within the cycle [0,T) for a part of Class 1
(respectively, for a part of Class 2), k = 0, . . . ,m;
T = the cycle time, and T1 = the semi-cycle time.

Given processing sequence S, robot’s route R, real numbers dj, rij,
Lk, and Uk (k = 1, . . . ,m; i = 1, . . . ,m+1; j = 0, . . . ,m), a feasible schedule

is a set of operation completion times tk, t0k and processing times pk

(k = 1, . . . ,m) lying within prescribed intervals [Lk,Uk] and providing
that the empty robot has sufficient time to travel between the
workstations, for some fixed pair of values T and T1. Such parame-
ter values T and T1 will be called feasible. The scheduling problem is
to find a feasible schedule {{tk}, {pk}} and a feasible pair (T,T1) so
that cycle time T is minimum, and, thus, the throughput rate is
maximum.

3. The critical path reformulation

For a given periodically repeated robot route R = ([0], [1], . . . ,
[m], [m+1], . . . , [2m+1]), the completion times tk and t0k satisfy the
following chain of inequalities:

0 ¼ t�½0� < t�½1� < t�½2� � � � < t�½2mþ1� < T; ð1Þ

where t�½q� denotes either tk or t0k.
The symbol * in t�½q� is used to distinguish whether the robot

transports a part of Class 1 or Class 2 during its [q]-th move;
namely, t�½q� is tk, for some k, if the part is of Class 1 and t�½q� is t0k if
the part is of Class 2. This information is given by the sequence
R. For example, if m = 4 and robot route R0 = (0,4,20,1,30,2,
00,40,3,10), then i (respectively, i0) denotes that a part of Class 1
(respectively, of Class 2) is moved by the robot from workstation
i, where i = 0,1,2,3,4.

The chain (1) in this case is the following:

0 ¼ t0 < t4 < t02 < t1 < t03 < t2 < t00 < t04 < t3 < t01 < T:

We will study the scheduling problem in time period [0,T) and
assume that the robot route R and, therefore, the inequalities (1)
are given. We distinguish the case where tk > tk�1 in (1) (we call
it ‘‘Case A”) from the case where tk < tk�1 in (1) (‘‘Case B”). The cases
will be displayed in the constraints 4 and 5 below. For instance, for
the route R0considered in the above example, operations on work-
stations {1,2,3} belong to the Case A while operation {4} is in Case
B. Also, we need to distinguish the case where tk < t0k from the case
tk > t0k in (1) as is displayed in the constraints 7 and 8 below.

Then, taking into account the chain of inequalities (1), the
scheduling problem in interval [0,T) can be formulated as the fol-
lowing linear program:

Problem P : Find T� ¼minimum T; ð2Þ
subject to Lk 6 pk 6 Uk; ð3Þ

pk ¼ tk � tk�1 � dk�1; if tk > tk�1 inð1Þ; ð4Þ
pk ¼ T þ tk � tk�1 � dk�1; if tk < tk�1 inð1Þ; ð5Þ
t�½q� þ d½q� þ r½q�þ1;½qþ1� 6 t�½qþ1�; ð6Þ
t0k ¼ tk þ T1; if tk < t0k inð1Þ; ð7Þ
t0k ¼ tk þ T1 � T; if tk > t0k inð1Þ; ð8Þ
t0 ¼ 0; ð9Þ

where k = 1, . . . ,m; q = 0,1,2, . . . ,2m + 1, t�½2mþ2� � T; r½2mþ1�þ1;½2mþ2� �
r½2mþ1�þ1;½0�; t00 ¼ T1.

Relation (3) describes the two-sided constraints on the process-
ing times. Relations 4 and 5, depending on the mutual position of tk

and tk�1in chain (1), express the no-wait condition, i.e., immedi-
ately after being completed on machine k � 1 (at moment tk�1) a
part is transported by the robot to machine k (which requires
dk�1 units of time) and then without delay is processed at that ma-
chine during pk units of time. Inequalities (6) guarantee that the ro-
bot has enough time to arrive at each machine (S[k+1]) before the
corresponding processing operation on this machine is finished.
Eqs. (7) and (8) describe relations between variables of Class 1, de-
noted by tk, and those of Class 2, denoted by t0k, depending on their
mutual position in (1). These equations guarantee that the parts of
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