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a b s t r a c t

We propose two efficient epidemic spreading algorithms (Naive SIR and Fast SIR) for arbi- 
trary network structures, based on the SIR (susceptible–infected–recovered) compartment 
model. The Naive SIR algorithm models full epidemic dynamics of the well-known SIR 
model and uses data structures efficiently to reduce running time. The FastSIR algorithm 
is based on the probability distribution over the number of infected nodes and uses the 
concept of generation time instead of explicit time in treating the spreading dynamics. Fur- 
thermore, we also propose an efficient recursive method for calculating probability distri- 
butions of the number of infected nodes. The average case running time of both algorithms 
has also been derived and an experimental analysis was made on five different empirical 
complex networks.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction 

Complex networks represent the structure of communicati on networks [3,7] or social contact interactio ns [23,27] very
well. Therefore, it is reasonabl e to study computer virus propagation or epidemic spreadin g on complex networks 
[2,28,15]. Modeling the spread of an epidemic in a population is usually done by dividing individuals in the population into 
subdivision s with some common characterist ic features called compartme nts. The SIR model is a good model for many infec- 
tious diseases where each individual in a population can be in one of three different compartme nts. Those who are suscep- 
tible to the disease are in the susceptible compartment, those who are infected and can transmit the disease to others are in
the infected compartment and those who have recovered and are immune and those who are removed from the population 
are in the recovered compartme nt. Some infectious diseases are described with a different number of compartment models,
e.g. SIS model (susceptible-infected-susce ptible) where individuals cannot have long lasting immunity and therefore the 
recovered compartment does not exist.

Different mathematical frameworks have been used to study epidemic spreading. We can divide them into two big cat- 
egories based upon assumptions they make: the homogen eous mixing framework and the heterogeneous mixing 
framework.
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The homogeneous mixing framewor k assumes that all individua ls in a population have equal probability of contact. This 
is a traditional mathematical framewor k [21,19,31], where differential equations can be applied to understa nd epidemic 
dynamics. The models in this framewor k predict the epidemic threshold which divides the healthy and the infective phase 
of the SIR and the SIS models.

In reality, each individua l has contact with only a small fraction of individuals in a population. As the assumption of
the homogeneous mixing fails to describe a realistic scenario of disease spreading, the heterogeneous mixing is described 
by using a network structure. The small world network property [39] and the scale-free network property [4,16] have a
great impact on the outcome of an epidemic spreading. The SIR and the SIS models in the heterogeneous mixing frame- 
work imply that a disease will always spread for certain power-law degree distribution s [30]. We can also make a further 
division in this framework by assumptions they make: the bond percolation, the mean-field and the particle network 
approach.

The bond percolation approach applies the percolation theory to describe epidemic processes on networks [26,18,24]. The 
percolation theory predicts the mean epidemic size, but neglects epidemic dynamics. Analytical solutions of a mean out- 
break size for the configuration network models have also been derived [9]. In order to show isomorphism of epidemic mod- 
els to bond percolation processes [20], the epidemic percolation networks were introduced as a valuable tool for studying of
the stochastic epidemic models.

The mean-field approach assumes that all nodes in a network with the same degree k with respect to an epidemic process 
are statistically equivalent [10,30]. This method enables us to write the epidemic time evolution equations for a network 
with an arbitrary degree distribution . By solving them, the relation of topology dependent features and the epidemic thresh- 
old have been discovered [38]. Recently, heterogeneous mean-field methodol ogy [32] for epidemic spreading on intercon- 
nected complex networks has also been develope d.

The particle network approach assumes that individuals are represented by particles which diffuse along edges on a net- 
work and each node contains some non-negativ e integer number of particles (reaction–diffusion processes). Some studies 
[11,12] used the contact network models between urban cities (cities are connected through airline transportati on network)
and the homogeneous mixing model inside urban cities and examine d the influence of interventi ons (antiviral drugs and 
containmen ts) to a worldwide spread of a pandemic.

Realistic epidemic simulations (GLEaMviz [8], EpiFast [6], EpiSims [5] and EpiSindemics [17]) have become a very 
important applicati on of high-performance computing in epidemic predictio ns. Recently, predictions of the epidemic 
spread by using Global Epidemic and Mobility Model [34] has been validated on a public health study of 2009 H1N1 
influenza. Optimal distribution of a vaccine supply can have a significant impact on an epidemic spreading outcome 
[33].

The large-scale fluctuations in network topology suggest that the role of each node in an epidemic process cannot be dis- 
regarded [35,37]. Our paper makes a contribution to the developmen t in the field of SIR simulation algorithms on complex 
networks. These algorithms have an important role in the research of epidemic processes in the heterogeneous mixing 
framework.

In this paper, we propose the Naive SIR algorithm and the FastSIR algorithm for simulatin g spreading process with the 
SIR model on an arbitrary network structure. The Naive SIR algorithm simulates full epidemic dynamics of the SIR model 
on a network. The name ‘‘naive’’ suggests that the Naive SIR algorithm is the straightforw ard approach but nevertheless it
uses data structures very efficiently. We use the Naive SIR algorithm as a baseline algorithm for comparison with the 
FastSIR algorithm. The main contribution of this paper is the FastSIR algorithm that uses probability distribution s over 
the number of infected nodes which speeds up the process of recovery of infected nodes in a simulation, thus reducing 
the overall running time. Although the FastSIR algorithm does not follow epidemic dynamics in time, it still captures all 
infection transfers.

In Section 2 we formally define the epidemic simulation problem and other concepts used in this paper. Section 3 de-
scribes our implementati on of the Naive SIR algorithm along with the running time and space complexity analysis. In Sec- 
tion 4 we describe the FastSIR algorithm along with the running time and space complexity analysis. By using a four-step 
proof, equivalence of the Naive SIR algorithm and the FastSIR algorithm regarding the number of infected nodes was shown.
We also described how to efficiently implement probability distribut ions of the number of infected nodes by a recursive 
method. In Section 5 we described the results of the performance analysis of our algorithms on five empirical complex net- 
works. In Sections 6 and 7 we described possible applications of our algorithms along with a discussion of results and a
conclusion.

2. The epidemic simulation problem 

We define the contact-netwo rk as an undirected and non-weight ed graph G(N,L) (N-set of nodes, L-set of links). A link 
(u,v) exists only if two nodes u and v are in contact during the epidemic time. We also assume that the contact-netwo rk dur- 
ing the epidemic process is a static one. To simulate epidemic propagation through a contact-netwo rk, we use the standard 
stochastic SIR model. In this model each node at some time can be in one of the following states: susceptible (S), infected (I)
or recovered (R). Time is modeled in discrete time steps, and number of time steps necessary for one epidemic simulation is
defined by the step at which epidemics stops spreading, i.e. when there are no infected nodes in the network.
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