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a b s t r a c t

The concept of preserving locality information in dimensionality reduction and semi-supervised

classification have been very popular recently. In this paper, we attempt to use locality sensitive weight

for clustering, where the neighborhood structure information between objects are transformed into

weights of objects. We develop two novel locality sensitive C-means algorithms, i.e. Locality-weighted

Hard C-Means (LHCM) and Locality-weighted Fuzzy C-Means (LFCM), following the standard C-Means

and fuzzy C-means, respectively. In addition, two semi-supervised extensions of LFCM are proposed to

better use some given partial supervision information in data objects. Experimental results on both

artificial and real datasets validate the effectiveness of the proposed algorithms.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Clustering deals with finding a structure in a collection of
unlabeled data. A cluster is therefore a collection of objects which
are ‘‘similar’’ between them and are ‘‘dissimilar’’ to the objects
belonging to other clusters. At present, clustering algorithms can be
categorized into several types, such as partitional method, hierarch-
ical method, density-based method, grid-based method and model-
based method [1].

In this paper, we mainly focus on the partitional method.
Presently, most clustering algorithms treat all data samples equally
in the clustering process, such as hard C-Means (HCM) and its fuzzy
extension, i.e. fuzzy C-Means (FCM) [2]. However, different samples
may play different roles in the clustering process, because the
samples distribute nonuniformly and asymmetrically. Moreover, a
sample may contribute to the clustering results differently in different
processes. Hence, it is very useful to give an appropriate sample
weight in cluster analysis. For that purpose, sample weighting
clustering algorithm have been proposed in literature [3–7].

In sample weighting clustering, the weight of each sample is very
important, since it determines the impact of the sample on the
clustering analysis. Conditional fuzzy C-means [3] and deterministic
annealing clustering [4] consider various contributions of different
samples and take account of sample weighting. However, the
application of the above algorithms are limited because they need
users or heuristic principle to weight samples.

To overcome that problem, Nock and Nisseslen proposed a
formalized clustering framework, borrowing the idea of the
boosting algorithm, which offers penalizing solutions via weights

on the samples [5]. In their paper [6], they pointed out the
importance of calculating the sample weight automatically during
the process of clustering analysis. Li et al. have proposed a typical-
weighting clustering algorithm for large datasets. It can obtain
original clustering samples using the atom-clustering algorithm,
then weight them according to the atom number of samples [7].
Zhang et al. have introduced the document clustering algorithm
based on sample weighting, which utilizes PageRank value as the
weight of the samples and then assigns different weights to
various samples, such that more reasonable centers could be
obtained [8]. However, it is only applicable to document
clustering and related areas. Gao et al. have presented weighted
fuzzy C-means clustering, which considers the appearance
probability of the gray levels from the gray histogram in an
image as the weight parameter and hence improves the algorithm
efficiency [9]. However, it is only suitable for image data.
Recently, the weighting idea has also been used for clustering of
fuzzy and relational data, respectively [10,11].

On the other hand, in machine learning and pattern recogni-
tion community, there have been a recent trend to utilize the local
structural information for learning. For example, The concept of
preserving locality information in dimensionality reduction and
semi-supervised classification have been very popular recently
[12,13]. Literatures [14–16] effectively utilizes the structure
information by building a graph incorporating neighborhood
information of the dataset. Using the notion of the graph
Laplacian, a weight matrix which indicates the intrinsic structure
is set up. However, to the best of knowledge, it remains unknown
whether the local structure information among the clustering
objects is also helpful to sample weighting clustering.

In this paper, motivated by the idea of optimally preserving the
neighborhood structure in dimensionality reduction and semi-
supervised learning, we propose a novel locality preserving
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weighting scheme for clustering, from which two new algorithms,
i.e. Locality-weighted Hard C-Means (LHCM) and Locality-
weighted Fuzzy C-Means (LFCM) are developed. LHCM and LFCM
calculate the distance between the samples and the centers to
gain a proper weight parameter so that they can primely describe
the neighborhood structure of the data. In addition, the proposed
methods are extended for semi-supervised cases to use the
available supervision information in data, e.g. partial labeled data
or pairwise constraints which specify whether a pair of data
belong to the same class or not [16].

The rest of this paper is organized as follows: In Section 2 the
background on HCM and FCM are briefly described. Section 3
derives the proposed LHCM and LFCM Clustering algorithms in
detail. Section 4 gives the semi-supervised extensions on LFCM.
The experimental results are given in Section 5. Finally, we
conclude this paper in Section 6.

2. Background

2.1. HCM

HCM is one of the simplest unsupervised learning algorithms
that solve the well-known clustering problem. The algorithm
classifies n vectors xj (j¼1,2y,n) through a certain number of
clusters (assume c clusters Gi (i¼1,2y,c) fixed a priori, and
calculates each centroid vi aiming at minimizing the objective
function. The objective function is defined as follows:

J¼
Xc

i ¼ 1

X
xj AGi

Jxj�viJ
2

ð1Þ

2.2. FCM

FCM is a method of clustering which allows one piece of data
to belong to two or more clusters. It is based on minimization of
the following objective function:

JðU,v1, . . . ,vcÞ ¼
Xc

i ¼ 1

Xn

j ¼ 1

um
ij Jxj�viJ

2
ð2Þ

where xj is the jth data example, vi is the ith cluster center, and uij

is the degree of membership of xj in the cluster i. The weighting
exponent m is a real number greater than 1 and the appropriate
values depend on datasets. The theoretical analysis on the
parameter m can be seen in the Refs. [17,18]. Finally in (2), J � J
is a norm measuring the distance metric between data examples
and the cluster centers. Fuzzy partitioning is carried out through
an alternate iterative optimization [2,19] of the objective function
shown above, with some properties:

Xc

i ¼ 1

uij ¼ 1, 8j¼ 1, . . . ,n, 0ouijo1, 0o
Xn

j ¼ 1

uijon ð3Þ

3. Locality sensitive C-means clustering

3.1. Locality-weighted hard C-means (LHCM)

Suppose that X¼x1,x2,y,xn is a d-dimensional database with n

points, and is divided into c clusters v¼v1,v2,y,vc, each cluster
can be represented by its cluster center vi. The objective function
of LHCM is defined as follows:

J¼
Xc

i ¼ 1

X
xj AGi

sijJxj�viJ
2

ð4Þ

where Gi denotes the ith cluster and sij is the weight between
points {xj} and centers {vi}. To preserve the neighborhood
structure information in the weight, we define the weighting
function as follows:

sij ¼ e�ðJxj�viJ
2
Þ=ti ð5Þ

where ti is a scaling parameter. When ti-0, the weight matrix
becomes the most important ingredient of the clustering result
while the weights are very similar with each other. In this case,
the weighted clustering will generate much poorer clustering
result. On the other hand, when ti-1, the weight matrix has
entries all equal to 1, and thus the weighted clustering is
degraded into non-weighted clustering.

In order to choose appropriate values for the weights, we use a
local scale for ti as follows:

ti ¼

s2
i xjANik

1

c

Pc
i ¼ 1 si

� �2

otherwise

8><
>: ð6Þ

where si ¼ ð1=kÞ
Pk

j ¼ 1 Jxj�viJ
2, k is the number of the neighbors

of the ith center. Nik is the k Nearest Neighbor (k-NN) neighbor-
hoods of the ith cluster. From (6), we can see that the scale can
automatically adapt to the local structure. In practice, usually it is
much easier to choose values for k than for ti.

Let uijAf0,1g denote whether xjAGi or not, i.e. uij¼1 means
xjAGi, and vice versa. Following the standard HCM, given the
locality weight sij we can easily derive the solutions of LHCM by
the following alternate iterations between the indicator uij and
the cluster centers vi. The detailed pseudo-code of LHCM is listed
in Table 1.

uij ¼
1 if 8k,Jxj�viJ

2rJxj�vkJ
2

0 otherwise

(
ð7Þ

vi ¼

Pn
j ¼ 1 uijsijxjPn

j ¼ 1 uijsij

ð8Þ

3.2. Locality-weighted fuzzy C-Means (LFCM)

As in LHCM, we modify the standard FCM by introducing the
locality weight sij. The objective function of LFCM is defined as
follows:

JðU,v1, . . . ,vcÞ ¼
Xc

i ¼ 1

Xn

j ¼ 1

um
ij sijJxj�viJ

2
ð9Þ

where xj is the jth of d-dimensional measured data, vi is the ith
cluster center, uij represents the fuzzy membership of the j-th
point with respect to cluster i, sij is the locality weight between
points xj and centers vi. The parameter m is a weighting exponent

Table 1
The LHCM algorithm.

Initialize: the cluster centers vð0Þ ¼ fvð0Þ1 ,vð0Þ2 , . . . ,vð0Þc g,l¼ 0,e40

Step 1: update sij
(l + 1) by the equation: sðlþ1Þ

ij ¼ e�ðJxj�vðlÞ
i
J2
Þ=ti

Step 2: update uij
(l +1) with the equation:

uðlþ1Þ
ij ¼

1 if 8k,Jxj�viJ
2 rJxj�vkJ

2

0 otherwise

(

Step 3: update vi
(l +1) with the equation: vðlþ1Þ

i ¼

Pn

j ¼ 1
uðlþ 1Þ

ij
sðlþ 1Þ

ij
xjPn

j ¼ 1
uðlþ 1Þ

ij
sðlþ 1Þ

ij

If maxiJvðlþ1Þ
i �vðlÞi Joe, then stop; else l¼ l+1 and go to step 1.
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