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Efficient scheduling algorithm for component-based networks
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Abstract

In a grid computing environment, it is important to be capable of agilely quantifying the quality of service achievable by each alternative
composition of resources. This capability is an essential driver to not only efficiently utilizing the resources but also promoting the virtual economy.
In this paper, we design an efficient scheduling algorithm of minimizing completion time for component-based networks. The performance of the
network is a function of resource assignment and resource allocation. Resource assignment assigns components to available machines and resource
allocation allocates the resources of each machine to the residing components. Though similar problems can be found in the multiprocessor
scheduling literature, our problem is different especially because the components in our networks process multiple tasks in parallel with their
successor or predecessor components. The designed algorithm is simple but effective since it incorporates the fact that the components in a
network can be considered independent under a certain resource allocation policy.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Individual systems are becoming interoperable by virtue of
the Grid technology which provides inexpensive access to large
computational resources across institutional boundaries [1–3].
Cost and quality considerations may force a large number
of customers to look for grid resources to deal with their
own computing problems. In a grid environment, a problem
is processed by allocating multiple resources. Since there can
be several alternative compositions of resources for a given
problem, virtual markets will play a critical role in coordinating
huge amount of economic entities such as customers and
resource providers. There are various market mechanisms such
as OCEAN [4], Compute Power Market [5], and Nimrod/G [6],
proposed for the large-scale virtual economy. However, one
essential enabler of such markets is the ability to agilely
quantify the quality of service (QoS) achievable by each
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alternative composition of resources. Without such a capability,
the alternatives cannot be evaluated in a timely manner and the
virtual economy will fail to efficiently utilize the resources.

There can be various ways of defining QoS depending on the
nature of the problems. We consider a class of problems whose
QoS is determined by completion time for generating a solu-
tion. The completion time (also called makespan) is one of the
most widely studied objectives in the multiprocessor scheduling
literature. Regarding the problem solving structure we adopt a
component-based architecture as a general framework. A com-
ponent is a reusable program element. Component technology
utilizes the components so that developers can build systems
needed by simply defining their specific roles and wiring them
together [7,8]. In networks with component-based architecture,
each component is highly specialized for specific tasks.

In this paper, we design an efficient scheduling algorithm
of minimizing the completion time for the component-based
networks. A problem given to the network is decomposed in
terms of root tasks for some components and those tasks are
propagated through a task flow structure to other components.
Since a problem can be decomposed with respect to space, time,
or both, a component can have multiple root tasks that can be
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considered independent and identical in their nature. For a given
set of resources the performance can vary depending on the
way of utilizing the resources. Resource assignment assigns
components to available machines with a set of constraints.
Some components may not be separable to different machines
and may only be allowed on to specific machines. Given a re-
source assignment, there can be multiple components in a ma-
chine sharing the machine’s resources. So, resource allocation
can play an important role in controlling the performance of a
network. These two facilities determine the performance of a
network and the minimal completion time represents the QoS
achievable by an alternative resource composition.

UltraLog (http://www.ultralog.net) networks [9–13],
implemented in Cougaar (Cognitive Agent Architecture:
http://www.cougaar.org) developed by DARPA (Defense Ad-
vanced Research Project Agency), are the instances. In Cougaar
a software system comprises of clusters and a cluster of com-
ponents (called plugins). The task flow structure in those sys-
tems is that of components as a combination of intra-cluster and
inter-cluster task flows. UltraLog networks are the next gen-
eration military logistics information systems. Each cluster in
these networks represents an organization of military supply
chain and has a set of components specialized for each function-
ality (allocation, expansion, inventory management, etc.) and
class (ammunition, water, fuel, etc.).

The objective of an UltraLog network is to produce a
logistics plan for a given military operation, which is an
aggregate of individual schedules built by components. An
operation is transformed into logistics requirements and the
requirements are decomposed into root tasks (one task per day)
for designated components. As a result, a component can have
hundreds of root tasks depending on the horizon of an operation
and thousands of tasks as the root tasks are propagated. As the
scale of operation increases there can be thousands of clusters
(tens of thousands of components) in hundreds of machines
working together to generate a logistics plan. One of the
important performance criteria of these networks is the (plan)
completion time. This metric directly affects the performance
of military operations.

Though similar problems exist in the multiprocessor
scheduling literature [14–21], they have limitations in
addressing this novel scheduling problem. They commonly
consider the cases where each component only has to process
one task after all of its predecessors complete their tasks. In
contrast, a component in the networks under consideration
processes multiple tasks in parallel with its successors or
predecessors. The multiprocessor scheduling problems are NP-
complete for most of its variants [22–24]. The scheduling
problem we are addressing is even harder due to the parallelism.
To address this complex scheduling problem there is a need to
facilitate some simple but effective scheduling algorithms.

The organization of this paper is as follows. In Section 2 we
formally define the scheduling problem in detail. Sections 3 and
4 design the scheduling algorithm. After describing the overall
procedure of applying the algorithm in Section 5, we present
empirical results in Section 6. Finally, we discuss implications
and possible extensions of our work in Section 7.

Fig. 1. An example network composed of four components in three machines.
〈a, b〉 denotes the number of root tasks and CPU time per task at the residing
machine.

2. Problem statement

In this section we formally define the problem by
detailing component-based network, resource assignment, and
resource allocation. We focus on computational CPU resources
assuming that the system is computation-bounded.

2.1. Component-based network

A component-based network consists of a set I = {i : i ∈ I}
of software components. Task flow structure of the network,
which defines precedence relationship between components,
is an arbitrary directed acyclic graph. A problem given to
the network is decomposed in terms of root tasks for some
components and those tasks are propagated through a task flow
structure. Each component processes one of the tasks in its
queue (which has root tasks as well as tasks from predecessor
components) and then sends it to successor components. We
denote the number of root tasks of component i as rti . Fig. 1
shows an example network comprised of four components
residing in three machines. In the figure 〈a, b〉 represents rti
and CPU time per task at the residing machine. Each of I1 and
I2 has 100 root tasks. I3 and I4 have no root tasks but they have
200 and 100 tasks from the corresponding predecessors.

2.2. Resource assignment

There is a set K = {k : k ∈ K} of available machines
and Pk

i represents CPU time per task of component i at
machine k reflecting computation speed differences between
heterogeneous machines. Considering that some components
may not be separable to different machines, we define a set
J = { j : j ∈ J} of clusters and denote the components
of a cluster j as M j . Each component is a member of one
of the clusters and the components in a cluster should be
assigned to the same machine. Also, each cluster is allowed
to specific machines and we denote the assignable machine set
of cluster j as N j . We define resource assignment variable set
X = {x jk : j ∈ J, k ∈ K} in which x jk is 1 if cluster j
is assigned to machine k and 0 otherwise. The constraints of
resource assignment variables are as in (1).
� Resource assignment constraints∑
k∈Nj

x jk = 1 for all j ∈ J

∑
k 6∈Nj

x jk = 0 for all j ∈ J

x jk ∈ {0, 1} for all j ∈ J and k ∈ K.

(1)
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