
Applied Soft Computing 40 (2016) 569–580

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

PGGP: Prototype Generation via Genetic Programming

Hugo Jair Escalantea,∗, Mario Graffb, Alicia Morales-Reyesa

a Computer Science Department, Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro 1, Puebla 72840, Mexico
b INFOTEC – Catedras CONACYT Centro de Investigación e Innovación en Tecnologías de la Información y Comunicación, Cto. Tecnopolo Sur 112, Ags. 20313,
Mexico

a r t i c l e i n f o

Article history:
Received 11 July 2014
Received in revised form
12 December 2014
Accepted 11 December 2015
Available online 23 December 2015

MSC:
68T10
68T20

Keywords:
Prototype generation
Genetic programming
1NN classification
Pattern classification

a b s t r a c t

Prototype generation (PG) methods aim to find a subset of instances taken from a large training data set,
in such a way that classification performance (commonly, using a 1NN classifier) when using prototypes
is equal or better than that obtained when using the original training set. Several PG methods have
been proposed so far, most of them consider a small subset of training instances as initial prototypes and
modify them trying to maximize the classification performance on the whole training set. Although some
of these methods have obtained acceptable results, training instances may be under-exploited, because
most of the times they are only used to guide the search process. This paper introduces a PG method based
on genetic programming in which many training samples are combined through arithmetic operators
to build highly effective prototypes. The genetic program aims to generate prototypes that maximize
an estimate of the generalization performance of an 1NN classifier. Experimental results are reported
on benchmark data to assess PG methods. Several aspects of the genetic program are evaluated and
compared to many alternative PG methods. The empirical assessment shows the effectiveness of the
proposed approach outperforming most of the state of the art PG techniques when using both small and
large data sets. Better results were obtained for data sets with numeric attributes only, although the
performance of the proposed technique on mixed data was very competitive as well.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Pattern classification is the task of associating objects with labels, where objects
are usually represented by numerical vectors. The field has been studied extensively
and a wide diversity of methods are available out there (see e.g., [13]). Among the
most popular pattern classification methods are those based on similarity or dis-
tance estimation. This type of methods rely on similarity measures to assign labels
to new objects, a representative classifier of this methodology is KNN [3]. Similarity-
based methods have proved to be very effective on classical pattern classification
tasks, including handwritten digit recognition and text categorization. However,
despite their acceptable performance, they require computing similarity estimates
with all of the training objects when a new instance needs to be classified, which can
be computationally expensive; besides, this type of methods require considerable
storage resources and they can be sensitive to noisy instances.

Prototype-based classifiers aim at alleviating the above issues by using only a
subset of representative instances for classification instead of the whole training set.
The main goal of prototype-based classifiers is to achieve comparable performance
to methods that use the whole data set of instances, while reducing the computa-
tional cost and storage requirements. The key issue in prototype-based classification
is that of determining what are the prototypes to be used for classification. There are
two main alternatives for solving this problem: selection and generation of proto-
types. In the former approach, a subset of the whole set of training objects is selected

∗ Corresponding author. Tel.: +52 222 2663100x8319; fax: +52 222 2663152.
E-mail addresses: hugojair@inaoep.mx (H.J. Escalante), mgraffg@gmail.com

(M. Graff), a.morales@inaoep.mx (A. Morales-Reyes).

as the set of prototypes [20,10]. The second approach consists of generating a set
of representative instances by using information from the data set of objects [23].
Although there are not comprehensive studies comparing generation and selection
strategies,1 generation methods are more general than selection ones and, in fact,
prototype selection can be considered a special case of prototype generation (PG)
[23].

This paper introduces a genetic programming approach to the PG problem. The
proposed method combines instances from the original training set to produce pro-
totypes. The instances to be merged and the combination strategy are automatically
determined via genetic programming, where the genetic program aims at generat-
ing prototypes that maximize an estimate of the generalization performance of an
1NN classification rule. The proposed strategy automatically selects the number
of prototypes per class. Also, it generates prototypes by combining many training
examples, in contrast to previous works that consider training instances only to
guide the search process. Additionally, the formulation of the problem allows us to
generate prototypes that are non-linear combinations of instances, which may help
us to better characterize the original input space.

An experimental assessment of the proposed strategy is carried out using a suite
of benchmark pattern-classification problems [23]. The considered benchmark
allows us to compare the performance between the proposed approach and the
most representative PG methods. In terms of accuracy and data set reduction, the
proposed method outperforms most alternative approaches when considering both
small and large data sets. Despite its effectiveness, the intuitive idea behind the

1 One should note that there are works comparing a few selection and generation
methods over a small number of data sets [17,14].

http://dx.doi.org/10.1016/j.asoc.2015.12.015
1568-4946/© 2015 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.asoc.2015.12.015
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2015.12.015&domain=pdf
mailto:hugojair@inaoep.mx
mailto:mgraffg@gmail.com
mailto:a.morales@inaoep.mx
dx.doi.org/10.1016/j.asoc.2015.12.015

570 H.J. Escalante et al. / Applied Soft Computing 40 (2016) 569–580

proposed method is very simple and there are many ways in which this approach
can be extended.

One should note that although our main goal is to generate prototypes for pat-
tern classification with KNN techniques, there are other tasks and problems that
could be benefit by PG techniques like ours, including: oversampling, where the
goal is generating new/artificial instances for reducing the class-imbalance prob-
lem; codebook learning, where one wants to learn a set of instances that can be
used as reference to represent more complex objects (e.g., images [5] or videos
[25]); instance-weighting for domain adaptation, where one wants to find impor-
tant instances in the source domain to be exploited in the target domain, among
other tasks. Besides, it has been shown very recently that a similar formulation can
be adopted to generate features [11].

The rest of this paper is organized as follows. Next section reviews related work
on PG emphasizing those methods based on heuristic optimization. Section 3 intro-
duces the proposed GP approach. Section 4 describes experimental settings and
reports experimental results obtained by the proposed strategy. Finally, Section 5
outlines conclusions and future work directions.

2. Related work

Triguero et al. [23] presented a taxonomy and a comparative
study among several PG methods.2 A total of 32 different strate-
gies are classified and an experimental comparison among 25 of
these methods is reported. In that study, the method achieving the
highest classification performance is GENN (Generalized Editing
using NN) [15], a detrimental method that removes and relabels
instances. GENN is a conservative method because it aims to edit
only to an extent that does not harm significantly the classification
performance, it achieves substantially better results than any other
of the PG methods compared in [23]; although it was among the
worse in terms of reduction. On the other hand, PSCSA (Prototype
Selection Clonal Selection Algorithm) obtained the best perfor-
mance in terms of reduction [9]. PSCSA models the PG problem with
an artificial immune system: the clonal selection algorithm. This
method is able to exactly select a single example per class, achiev-
ing the best reduction performance among the other 24 methods
considered in [23]. However, its performance in terms of accuracy
is worse in comparison to several other strategies. Hence, a les-
son learned from [23] is that a good PG method must observe an
acceptable tradeoff between accuracy and reduction.

PG methods proposed so far are very diverse, in recent stud-
ies PG methods based on bio-inspired optimization have reported
better results than alternative approaches [23,24,9,8,19,1]. Usually,
these methods start from a set of solutions (sets of prototypes) and
modify them according to specific operators, through an iterative
search procedure that attempts to optimize a criterion related to
the prototypes classification performance.

A PG method based on particle swarm optimization (PSO)
was proposed in [19]. A standard PSO algorithm was designed to
attempt to minimize the classification error in the training set. The
method is run for several times in order to obtain varied solutions.
When classifying a new object the outputs of all prototypes set are
combined via voting. The ensemble strategy allows this method to
obtain better results than many other methods evaluated in [23].
Another variant of PSO, adaptive Michigan PSO (AMPSO), has also
been used for generating prototypes. In AMPSO each swarm particle
is associated to a prototype in such a way that the whole population
is the set of prototypes to optimize [1].

Regarding evolutionary algorithms, successful approaches have
been proposed as well. For instance, ENPC (Evolutionary Design of
NN classifiers) proposed in Fernandez and Isasi [8] is an evolution-
ary algorithm that starts from a single individual that is evolved
by applying a variety of operators to combine and split prototypes.
This method is able to automatically determine the number of pro-
totypes and requires little information from the user. ENPC is able

2 See also: http://sci2s.ugr.es/pr/.

to obtain competitive performance in terms of accuracy but it is not
among the best methods in terms of reduction [23].

In most of the above reviewed PG methods, only a small sub-
set (the initial prototypes) of training instances has an impact into
the resultant set of prototypes; even when the whole training set
is considered to assess the prototypes quality. It is important to
notice that important information could be captured if more train-
ing samples are considered to build prototypes. The PG method
proposed in this research aims to amend this issue by generat-
ing prototypes from combinations of training instances, where any
training instance can be considered during the optimization pro-
cess. Additionally, the way we formulate the problem allows us
to obtain prototypes that are non-linear combinations of training
instances, which may be helpful to better characterize the original
input space. In Section 4 the proposed GP method demonstrates a
better tradeoff than most of the methods reviewed in this section
and others considered in Triguero et al. [23].

The proposed PG method is based on genetic programming,
an evolutionary algorithm where individuals can be complex data
structures [21]. Genetic programming has a long history in machine
learning and pattern classification [16]. However the most common
application for genetic programming is related to the generation of
either decision-trees or rule-induction based classifiers [7,16]. To
the best of our knowledge no PG method based on genetic program-
ming has been proposed so far. In Cordella et al. [2], authors describe
a genetic program for producing what they call “classification pro-
totypes”. However, those “prototypes” are in fact logical rules used
for classification, which are learned via genetic programming.

A preliminary version of the proposed method was reported
in [6], this paper extends that publication by providing a more
comprehensive and detailed description of the proposed method.
Moreover, the previous algorithmic approach has been improved
by removing a genetic operator and extensive experimental results
are reported to evaluate the performance of the proposed strategy
while considering different settings.

3. PGGP: Prototype Generation via Genetic Programming

This paper introduces PGGP: a method for Prototype Generation
via Genetic Programming. PGGP automatically combines instances
from a particular class to generate classification prototypes for that
class. The combination strategy is determined by a genetic pro-
gram that aims at maximizing an estimate of the generalization
performance of an 1NN classifier. Although the prototypes of a
class are determined only by examples of its class, under the pro-
posed approach the prototypes for all classes are dependent on each
other, because the fitness function evaluates the set of prototypes
as a whole; hence making prototypes suitable for discrimination.
PGGP selects appropriate instances for combination and, at the
same time, determines which operators should apply in order to
combine these instances and generate prototypes. Moreover, since
in most classification problems is unrealistic to know beforehand
the number of prototypes, the genetic program is freely allowed to
learn the best number of prototypes for each class. The rest of this
section describes in detail the proposed PGGP method.

3.1. Considered scenario

Let T = {(x1, y1). . ., (xN, yN)} be a training set of labeled
instances, with xi ∈ R

d and yi ∈ C = {1, . . ., K}, where d is the
problem dimensionality and K is the number of classes in the
considered problem. The goal is to generate a set of prototypes
P = {(w1, y1). . ., (wL, yL)}, such that L « N, where wi ∈ R

d and there
is at least one prototype associated to each class in C. The considered
scenario is graphically described in Fig. 1.

http://sci2s.ugr.es/pr/
http://sci2s.ugr.es/pr/
http://sci2s.ugr.es/pr/
http://sci2s.ugr.es/pr/
http://sci2s.ugr.es/pr/
http://sci2s.ugr.es/pr/

http://isiarticles.com/article/79449

