

International Journal of Approximate Reasoning 30 (2002) 131-147

www.elsevier.com/locate/ijar

A heuristic algorithm for computing the max–min inverse fuzzy relation

Parbati Saha a,*, Amit Konar b

Department of Mathematics, B.E. College (Deemed University), Howrah 711103, India
E.T.C.E. Department, Jadavpur University, Calcutta 700032, India

Received 1 July 2000; received in revised form 1 July 2001; accepted 1 March 2002

Abstract

The paper addresses a classical problem of computing approximate max—min inverse fuzzy relation. It is an NP-complete problem for which no polynomial time algorithm is known till this date. The paper employs a heuristic function to reduce the search space for finding the solution of the problem. The time-complexity of the proposed algorithm is $O(n^3)$, compared to $O(k^n)$, which is required for an exhaustive search in the real space of [0,1] at k regular intervals of interval length (1/k).

Keywords: Algorithms; Max-min inverse fuzzy relation; Heuristics

© 2002 Elsevier Science Inc. All rights reserved.

1. Introduction

Let X and $Y \subseteq r$ be two universal sets. A fuzzy relation that describes a mapping from X to $Y(X \to Y)$ generally is a fuzzy subset of $X \times Y$, where 'x' denotes a cartesian product [18]. Formally, a fuzzy relation **R** is defined by

$$\mathbf{R}(x,y) = \{ ((x,y), \mu_{\mathbf{R}}(x,y)) \, | \, (x,y) \in X \times Y \}, \tag{1}$$

where $\mu_{\mathbf{R}}(x,y)$ refers to the membership of (x,y) to belong to the fuzzy relation $\mathbf{R}(x,y)$. Fuzzy 'composition' [8] is an operation, by which fuzzy relations in different product space can be combined with each other. There exist different

E-mail address: parbati_saha@hotmail.com (P. Saha).

0888-613X/02/\$ - see front matter © 2002 Elsevier Science Inc. All rights reserved. PII: \$0888-613X(02)00069-5

^{*} Corresponding author.

versions of 'composition'. The 'max-min' composition, which is most popular among them is defined below. Let $X,Y,Z\subseteq r$ be three universal sets and $R_1(x,y),(x,y)\in X\times Y$ and $R_2(y,z),(y,z)\in Y\times Z$ be two fuzzy relations. The max-min composition of \mathbf{R}_1 and \mathbf{R}_2 , denoted by $\mathbf{R}_1\circ\mathbf{R}_2$ is then a fuzzy set, is defined by

$$\mathbf{R}_{1} \circ \mathbf{R}_{2} = \left\{ (x, z), \max_{y} \left\{ \min \left\{ \mu_{\mathbf{R}_{1}}(x, y), \mu_{\mathbf{R}_{2}}(y, z) \right\} \right\} \right\}, \tag{2}$$

where $x \in X$, $y \in Y$ and $z \in Z$. For brevity, we shall use ' \wedge ' and ' \vee ' to denote 'min' and 'max' operators, respectively. Thus expression (2) can be re-written as

$$\mathbf{R}_{1} \circ \mathbf{R}_{2} = \left\{ (x, z), \bigvee_{y} \{ \mu_{\mathbf{R}_{1}}(x, y) \wedge \mu_{\mathbf{R}_{2}}(y, z) \} \right\}.$$
 (3)

We use $\mu_{\mathbf{R}_1 \circ \mathbf{R}_2}(x, z)$ to denote the membership function of (x, z) in the maxmin composition relation $\mathbf{R}_1 \circ \mathbf{R}_2$ is defined by

$$\mu_{\mathbf{R}_1 \circ \mathbf{R}_2}(x, z) = \bigvee_{y} \{ \mu_{\mathbf{R}_1}(x, y) \wedge \mu_{\mathbf{R}_2}(y, z) \}$$
 (4)

1.1. Fuzzy max-min inverse relations

Let $X = \{x_1, x_2, \dots, x_n\}$, $Y = \{y_1, y_2, \dots, y_m\}$ and $Z = \{z_1, z_2, \dots, z_l\}$ be three universal sets and $\mathbf{R}_1, \mathbf{R}_2$ be two fuzzy relations on $X \times Y$ and $Y \times Z$, respectively. Again, let $\mathbf{R}_1 \circ \mathbf{R}_2 = \mathbf{I}$, where \mathbf{I} denotes an identity relation, such that $\mu_{\mathbf{R}_1 \circ \mathbf{R}_2}(x, z) = \mathbf{I}$, when $x = x_i \in X$ and $z = z_i \in Z$ and $\mu_{\mathbf{R}_1 \circ \mathbf{R}_2}(x, z) = 0$, otherwise. Under this circumstances, we call \mathbf{R}_1 , the max-min pre-inverse relation to \mathbf{R}_2 and \mathbf{R}_2 , the max-min post-inverse relation to \mathbf{R}_1 . Unfortunately, $\mathbf{R}_1 \circ \mathbf{R}_2 = \mathbf{I}$ is true, only when $\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{I}$. We thus define \mathbf{R}_1 as the approximate max-min pre-inverse relation to \mathbf{R}_2 , when $\mathbf{R}_1 \circ \mathbf{R}_2 = \mathbf{I}'$, such that \mathbf{I}' is sufficiently close to \mathbf{I} with respect to a Euclidean norm of the difference $(\mathbf{I} - \mathbf{I}')$, estimated by

$$D = \left[\sum_{\forall z} \sum_{\forall x} \left\{ \mu_{\mathbf{I}}(x, z) - \mu_{\mathbf{I}'}(x, z) \right\}^2 \right]^{1/2},$$

where D should not exceed a small pre-defined real number. The definition of approximate post-inverse relation to \mathbf{R}_1 may also be given analogously.

1.2. Best approximate pre-inverse relation

Let Q be a set of fuzzy relations of R_1 , such that for all $R_1 \in Q$, there exists an R_2 with $R_1 \circ R_2 = I'$ and

دريافت فورى ب متن كامل مقاله

ISIArticles مرجع مقالات تخصصی ایران

- ✔ امكان دانلود نسخه تمام متن مقالات انگليسي
 - ✓ امكان دانلود نسخه ترجمه شده مقالات
 - ✓ پذیرش سفارش ترجمه تخصصی
- ✓ امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
 - ✓ امكان دانلود رايگان ۲ صفحه اول هر مقاله
 - ✔ امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
 - ✓ دانلود فوری مقاله پس از پرداخت آنلاین
- ✓ پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات