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a b s t r a c t

In this paper, an online optimal control scheme for a class of unknown discrete-time (DT) nonlinear
systems is developed. The proposed algorithm using current and recorded data to obtain the optimal
controller without the knowledge of system dynamics. In order to carry out the algorithm, a neural
network (NN) is constructed to identify the unknown system. Then, based on the estimated system
model, a novel time-based ADP algorithm without using system dynamics is implemented on an actor–
critic structure. Two NNs are used in the structure to generate the optimal cost and the optimal control
policy, and both of them are updated once at the sampling instant and thus the algorithm can be
regarded as time-based. The persistence of excitation condition, which is generally required in adaptive
control, is ensured by a new criterion while using current and recorded data in the update of the critic
neural network. Lyapunov techniques are used to show that system states, cost function and control
signals are all uniformly ultimately bounded (UUB) with small bounded errors while explicitly
considering the approximation errors caused by the three NNs. Finally, simulation results are provided
to verify the effectiveness of the proposed approach.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The theory of optimal control is concerned with finding a control
law for a given system and user defined optimality criterion. Tradi-
tional optimal control designmethods are generally offline and require
complete knowledge of the system dynamics [1]. Adaptive control
techniques on the other side are designed for online use of uncertain
systems. However, classical adaptive control methods are generally far
from optimal.

During the last few decades, reinforcement learning (RL) [2–4]
has successfully provided a way to bring together the advantages of
adaptive and optimal control. A class of RL-based adaptive optimal
controllers, called approximate/adaptive dynamic programming
(ADP), was first developed by Werbos [5,6]. Extensions of the RL-
based controllers to DT systems have been considered by many
researchers [7–20]. In [7], the authors attempted to solve the DT
nonlinear optimal control problem offline using ADP approaches
and neural networks by assuming that there are no NN reconstruc-
tion errors. Based on the results of [7], other researchers developed
offline ADP approaches in some complicated situations, such as

optimal tracking problem [8,14,21], optimal control with control
constraints [10], optimal control with time delays [11,12], optimal
control with finite approximation errors [15]. However, the above
works are all required the knowledge of system dynamics and using
offline tuning law.

Since the mathematical models of real-world system dynamics
are often difficult to build, it has become one of the main foci of
control practitioners to design the optimal controller for nonlinear
systems with unknown dynamics. The work of [9] analyzed the
convergence of unknown DT nonlinear systems using offline-
trained neural networks, but this method introduced the Lebesgue
integral [7], which required data of a subset of the plant, in the
tuning law and thus spent too much time on off-line training. In
[20], the authors developed one way to control the unknown DT
nonlinear systems using globalized dual heuristic programming,
and others employed the single network dual heuristic dynamic
programming (SN-DHP) technique in the ADP algorithm in [19].
Both of them introduced the gradient-based adaptation tuning law
instead of the way in [9]. However, without using recorded system
data, iterations were needed in the tuning law [19,20] and the
critic NN and actor NN could not be updated with respect to time
at each sampling interval. Moreover, although [9,20,21] con-
structed a NN to identify the unknown system dynamics, they
assumed that the NN identification error approached to zero, and
thus the effects of the estimation error on the convergence of the
actor–critic algorithms were not considered.
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On the other hand, online adaptive-optimal controller designs
were presented in [17,18,22–24] to overcome the iterative offline
training methodology. The central theme of the approaches in
[24,23] as well as several works in [22] is that the cost function
and optimal control signal are approximated by online parametric
structures, such as NN. Although the proposed methods in [22–24]
are verified via numerical simulations, the approximation errors
are not considered and proofs of convergence are not demon-
strated. The work of [17] presented a novel approach that relied on
current and recorded system data for adaptation and proved the
convergence while the approximation errors are considered, and
recently the authors in [18] improved this method in the presence
of unknown internal dynamics and called it time-based ADP
algorithm. However, since the requirement of the knowledge of
control coefficient matrix in the tuning law, the general time-
based ADP algorithm [17,18] becomes invalid while dealing with
the unknown DT nonlinear system. Meanwhile, most of the online
adaptive optimal control algorithms with ADP require a persis-
tence of excitation (PE) condition [25–27] that is important in NN
identification. Refs. [17,18] proposed a similar condition to ensure
the PE requirement, but they did not give the lower bound in
the proof.

The contributions of this paper lie in the development of an
online adaptive learning algorithm to solve an infinite horizon
optimal control problem for unknown DT nonlinear systems. By
performing identification process, the time-based ADP algorithm,
which makes use of current and recorded system data, is applic-
able to deal with the optimal control problem of unknown non-
linear systems. However, the general time-based ADP technique
requires knowing the system dynamics. By using current and
recorded system information, the PE condition is ensured by a
new criterion with explicit lower bound and the unknown non-
linear DT system can be controlled once at the sampling instant.
Convergence of the system states and NN implementation is
demonstrated while explicitly considering all the NN reconstruc-
tion errors in contrast to previous works [9,20,21].

2. Background

Consider the affine DT nonlinear system described by

xkþ1 ¼ f ðxkÞþgðxkÞuðxkÞ ð1Þ

where xkARn, f ðxkÞARn, gðxkÞARn�m and uðxkÞARm. Without loss
of generality, assume that the system is controllable, sufficiently
smooth, drift free, and that x¼0 is a unique equilibrium point on a
compact set Ω while the states are considered measurable. In the
following part, uðxkÞ is denoted by uk for simplicity.

Define the infinite horizon cost function

JðxkÞ ¼
X1
n ¼ k

Q ðxnÞþuT
nRun

¼ Q ðxkÞþuT
kRukþ Jðxkþ1Þ

¼ ρðxk;ukÞþ Jðxkþ1Þ ð2Þ

where Q ðxkÞ is a positive definite, RARm�m is a symmetric positive
definite matrix, and ρðxk;ukÞ ¼Q ðxkÞþuT

kRuk is the utility function.
In order to control (1) in an optimal manner, it is desired to

select the control sequence uk to minimize the cost function (2)
for all xk. Further, it is required that the control sequence uk is
admissible and Jðxk ¼ 0Þ ¼ 0 so that the cost function serves as a
Lyapunov function.

According to Bellmans optimality principle, the infinite horizon
optimal cost function JnðxkÞ satisfies the DTHJB equation

JnðxkÞ ¼min
uk

ðρðxk;ukÞþ Jnðxkþ1ÞÞ ð3Þ

where xkþ1 can be derived from Eq. (1).
The optimal control uk is found by solving ∂JnðxkÞ=∂uk ¼ 0, and

then it is given by

un

k ¼ �1
2
R�1gðxkÞT

∂Jnðxkþ1Þ
∂xxþ1

: ð4Þ

The optimal control (4) for unknown DT nonlinear systems is
generally unavailable due to its dependence on gðxkÞ and xkþ1. To
circumvent these deficiencies, a NN identification scheme for
unknown systems is presented next.

3. NN identification of the unknown nonlinear system

To begin the NN identifier construction, the system dynamics
(1) are rewritten as

xkþ1 ¼ f ðxkÞþgðxkÞuk ¼Hðxk;ukÞ: ð5Þ
The function Hðxk;ukÞ has a NN representation on a compact set S
according to the universal approximation property of NN, which
can be written as

Hðxk;ukÞ ¼WT
sθðYT

s zsðkÞÞþεsk ¼WT
sθðzsðkÞÞþεsk ð6Þ

where WsARl�n and YsARðnþmÞ�l are the constant ideal weight
matrices. l is the number of hidden layer neurons. θð�Þ is the NN
activation function, zsðkÞ ¼ ½xTk uT

k �T is the NN input and let
zsðkÞ ¼ YT

s zsðkÞ, εsk is the bounded NN functional approximation
error and satisfies Jεsk JrεsM and Jε0sk Jrε0sM for constants εsM
and ε0sM respectively. Additionally, the NN activation functions
and their gradients are bounded such that Jθð�ÞJrθM and
Jθ0ð�ÞJrθ0

M for constants θM and θ0
M respectively.

During the system identification process, keep Ys constant
while only tune Ws, the identification scheme is then defined as

x̂kþ1 ¼ Ŵ
T
s ðkÞθðzsðkÞÞ ð7Þ

where x̂k is the estimated system state vector, and Ŵ s is the
estimation of the ideal constant weight matrix Ws. The parameter
estimation error is defined as ~W sðkÞ ¼Ws�Ŵ sðkÞ.

Define the error performance as Esðkþ1Þ ¼ ~xTkþ1 ~xkþ1=2, where
~xk ¼ xk� x̂k. To minimize the error performance Esðkþ1Þ, the
weights tuning law are proposed as

Ŵ sðkþ1Þ ¼ Ŵ sðkÞ�αs
∂Esðkþ1Þ
∂Ŵ sðkÞ

" #

¼ Ŵ sðkÞ�αsθðzsðkÞÞ ~xTkþ1 ð8Þ

where αs40 is the learning rate.

Theorem 1 (Liu et al. [20]). Let the identification scheme (7) be used
to identify the nonlinear system (1), and let the parameter update law
(8) be used to tune the NN weights. Then, the state estimation error
dynamics ~xk is asymptotically stable while the parameter estimation
error ~W sðkÞ is bounded.

After a sufficient learning session, the estimation error can be
denoted as

~xkþ1 ¼WT
sθðzsðkÞÞ�Ŵ

T
sθðzsðkÞÞþεsk ¼ ~W

T
sθðzsðkÞÞþεsk: ð9Þ

According to Theorem 1, we can assume J ~W s Jr ~W sM, where ~W sM

is a small positive constant. Then we can conclude that J ~xkþ1 Jr
~xM where ~xM is a small bounded positive constant.
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