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a b s t r a c t

In this paper, based on an equivalent mixed linear complementarity problem, we propose a neural net-
work to solve multiuser power control optimization problems (MPCOP), which is modeled as the nonco-
operative Nash game in modern digital subscriber line (DSL). If the channel crosstalk coefficients matrix
is positive semidefinite, it is shown that the proposed neural network is stable in the sense of Lyapunov
and global convergence to a Nash equilibrium, and the Nash equilibrium is unique if the channel crosstalk
coefficients matrix is positive definite. Finally, simulation results on two numerical examples show the
effectiveness and performance of the proposed neural network.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Due to low infrastructure cost and high speed data communica-
tion, digital subscriber line (DSL) technology has become a widely-
used method for broadband internet access. In the DSL, power
control of the design of interference-limited multiuser communi-
cation systems is a central issue, and it also has attracted significant
attention fromboth academia and industry. Power control refers to
forcing each user to transmit enough power so that it can achieve
the required quality without causing unnecessary interference to
other users in these systems. Therefore, the systemdesign involves
a performance tradeoff among the different users.

In the DSL, multiuser power control is an optimization prob-
lem, and a typical measure of system throughput is the sum of all
users’ rates (Cendrillon, Moonen, Verliden, Bostoen, & Yu, 2004;
Cherubini, Eleftheriou, & Olcer, 2000; Song, Chung, Ginis, & Cioffi,
2002). Unfortunately, in this framework, the optimization prob-
lem of maximizing the sum rates is nonconvex with many local
solutions (Song et al., 2002). In Cherubini et al. (2000), Cherubini
et al. proposed a simulated annealingmethod to obtain a global op-
timal power allocation solution, which suffers from slow conver-
gence and lack a rigorous analysis. Anothermethodwhich has been
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very successful in solvingmultiuser power control is the game the-
oretic approach. Yu, Ginis, and Cioffi (2002) considered the mul-
tiuser power control problem in a frequency-selective interference
channel, which is modeled as a noncooperative game, and its key
observation is that each DSL user’s data rate is a concave func-
tion of its own power spectra vector when the interfering users’
power vectors are fixed. Luo and Pang (2006) presented a conver-
gence analysis of iterative water-filling algorithm in more realistic
channel settings and for arbitrary number of users. In Yamashita
and Luo (2008), multiuser power control problem was formulated
to find a Nash equilibrium of the DSL game as a nonlinear com-
plementarity problem. In Cendrillon, Yu, Moonen, Verlinden, and
Bostoen (2010), Cendrillon et al. discussed a centralized algorithm
for optimal spectrum balancing. In Pang, Scutari, Facchinei, and
Wang (2008), Pang et al. introduced the minimization of transmit
power in Gaussian parallel interference channels subject to a rate
constraint for each user. Therefore, many researchers have made
deep research into the algorithm of multiuser power control opti-
mization problem in the DSL.

In the application of multiuser power control optimization
problems (MPCOP), real-time solutions are often needed. How-
ever, classical optimization methods are not competent for prob-
lems with high dimensionality or stringent computation time
requirement. In the past two decades, the essence of neural net-
work optimization lies in its inherent nature of parallel and dis-
tributed information processing and the availability of hardware
implementation (Hopfield & Tank, 1985; Tank & Hopfield, 1986).
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Since the seminal work of Hopfield and Tank, there has been in-
creasing interesting in investigating the theory, methodology and
applications of recurrent neural networks for optimization. Based
on penalty functions, Lagrange functions and primal and dual func-
tions,manyneural networks for solving various optimization prob-
lems (Bian & Chen, 2012; Cheng, Hou, & Tan, 2008; Forti, Nistri,
& Quincampoix, 2006; Gao, Liao, & Qi, 2005; He, Li, Huang, & Li,
2014a, 2014b; Hosseini, Wang, & Mohamma, 2013; Hu & Wang,
2006, 2007; Hu & Zhang, 2009; Liu, Cao, & Chen, 2010; Liu, Guo,
& Wang, 2012; Liu & Wang, 2011, 2013; Wang, 1993; Xia, 1996;
Xia, Leung, &Wang, 2002; Xia &Wang, 2004) were developed, and
these neural networks improved performance in terms of global
convergence and parallel computational implementability.

In this paper, motivated by the effectiveness and efficiency of
neural network optimization method, we have attempted to solve
MPCOP using neural network approach. Comparedwithmany iter-
ative algorithms, our contribution is to design neural network for
solving multiuser power control problem. Following the method
(Luo & Pang, 2006), the Karush–Kuhn–Tacker optimality condi-
tions of the noncooperative Nash game which results from MP-
COP are reformulated as equivalent mixed linear complementarity
problem (LCP). Based on LCP, a projection neural network is pro-
posed for solving this Nash game. Using Lyapunov function theory,
it is shown that the proposed neural network is Lyapunov stable
and globally convergent to Nash equilibria sets, and under arbi-
trary symmetric interference environment and certain asymmetric
channel condition, it is proven that the proposed neural network
is globally convergent to unique Nash equilibrium. Finally, simu-
lation results on numerical examples show the effectiveness and
performance of the neural network for solving MPCOP.

The remainder of this paper is organized as follows. In the next
section, the noncooperative Nash game about MPCOP is described,
and a projection neural network is proposed to solve the noncoop-
erative Nash game. The convergence of the proposed neural net-
work is proved in Section 3. In Section 4, simulation results on two
numerical examples are given. Finally, Section 5 concludes this pa-
per.

Notation: Given column vectors x = (x1, x2, . . . , xn)T , (x)+ =
(x1)+, (x2)+, . . . , (xn)+

T
, (xi)+ = max(0, xi), 1n =

T
[1, 1, . . . , 1]  

n

,

x > 0 means all the xi > 0. ∥x∥ denotes l2 norm. ∀a, b ∈ R1, a ⊥ b
denotes a · b = 0. For K ⊂ Rn, the projection operator HK (x) is
defined by: HK (x) = arg miny∈K ∥x − y∥.

2. Problem formulation and model description

In this section, we introduce the game theoretic formulation
of MPCOP in the DSL model. Then we will construct a recurrent
neural network for solving MPCOP. Consider a tuple (m, F , Ω)
wherem is the number of users in digital subscriber lines,ndenotes
the total number of frequency tones available to the DSL users.
F =


(fi)mi=1


is the set of user-specific objective functions, each

user controls the variable pi =

pi1, p

i
2, . . . , p

i
n

T
∈ Rn, which

denotes the power spectra vector of user i with pik signifying the
power allocated to frequency tone k, and we denote by p the
overall vector of all variables p =


(p1)T , (p2)T , . . . , (pm)T

T
∈

Rmn, and the user-specific strategy sets Ω are denoted by Ω =

{Ω1, Ω2, . . . , Ωm} , Ωi ⊆ Rn, and Ωi is described by

Ωi =


pi ∈ Rn

| 0 ≤ pik ≤ CAP i
k, ∀k = 1, . . . , n,

n
k=1

pik ≤ P i
max


,

where CAP i
k and P i

max are some positive constants. Taking pjk for
j ≠ i as fixed, user i solve the following concave maximization

problem

max
pi

fi

pi; p−i

≡

n
k=1

log

1 +
pik

σ i
k +


j≠i

α
ij
kp

j
k

 s.t. pi ∈ Ωi, (1)

where p =

pi; p−i


, pi is the strategy of player i and p−i are the

strategies of all the users except i, σ i
k are positive scalars and α

ij
k

are nonnegative scalars for all i ≠ j, and all k representing noise
power spectra and channel crosstalk coefficients, respectively.
Then a Nash equilibrium is a feasible p∗

=


p1,∗

T
,

p2,∗

T
, . . . ,

(pm,∗)T
T

such that fi

pi,∗; p−i,∗


≥ fi


yi; p−i,∗


, ∀yi ∈ Ωi, ∀i =

1, 2, . . . ,m. In the following, we state some assumptions about the
cost functions and strategy sets.

Assumption 1. In the feasible set Ωi, P i
max <

n
k=1 CAP

i
k.

Assumption 2. αii
k = 1 for all k and i.

For problem (1), define a Lagrange function

Li

pi, ui, γ i

= −fi + ui


n

k=1

pik − P i
max



+

n
k=1

γ i
k


pik − CAP i

k


, (2)

where ui
∈ R1, γ i

k ∈ R1 are the multiplier of the inequality
n

k=1
pik ≤ P i

max, p
i
k ≤ CAP i

k, respectively. According to the well-known
saddle point theorem (Body&Vandenberghe, 2003),we can get the
KKT conditions for user i of problem (1) as follows:

0 ≤ pik ⊥ −
1

σ i
k +

m
i=1

α
ij
kp

j
k

+ ui + γ i
k ≥ 0, ∀k = 1, 2, . . . , n

0 ≤ ui
⊥ P i

max −

n
k=1

pik ≥ 0

0 ≤ γ i
k ⊥ CAP i

k − pik ≥ 0, ∀k = 1, 2, . . . , n

(3)

p∗ is a solution of problem (1) if and only if there exist u∗
=

u1,∗, u2,∗, . . . , um,∗
T

∈ Rm and γ ∗
=


γ 1,∗

T
,

γ 2,∗

T
, . . . ,

(γ m,∗)T
T

∈ Rmn such that (p∗, u∗, γ ∗) satisfies system (3). From
Luo and Pang (2006), we have the following results.

Lemma 1. Under Assumptions 1–2, system (3) is equivalent to the
following system

0 ≤ pik ⊥ σ i
k +

m
j=1

α
ij
kp

j
k + vi + ϕi

k ≥ 0, ∀k = 1, 2, . . . , n

P i
max −

n
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pik = 0, vi is free

0 ≤ ϕi
k ⊥ CAP i

k − pik ≥ 0, ∀k = 1, 2, . . . , n

(4)

where vi = −
1
ui
, ϕi
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k
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, and p∗ is a solution of

problem (1) if and only if there exist v∗
=

v1,∗, v2,∗, . . . , vm,∗
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∈

Rm and ϕ∗
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,
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∈ Rmn such that

(p∗, v∗, ϕ∗) satisfies system (4).
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