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Abstract

We study in this paper the first-order behavior of value functions in parametric dynamic programming with linear constraints and
nonconvex cost functions. By establishing an abstract result on the Fréchet subdifferential of value functions of parametric mathematical
programming problems, some new formulas on the Fréchet subdifferential of value functions in parametric dynamic programming are
obtained.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A wide variety of problems in discrete optimal control can be posed in the following form.
Determine a control vector u = (u0,u1, . . . ,uN�1) 2 U0 · U1 · � � � · UN�1 and a path x = (x0,x1,. . .,xN) 2 X0 ·

X1 · � � � · XN which minimize the costXN�1

k¼0

hkðxk; uk;wkÞ þ hN ðxNÞ ð1Þ

with state equation

xkþ1 ¼ Akxk þ Bkuk þ T kwk for all k ¼ 0; 1; . . . ;N � 1; ð2Þ
the constraints

uk 2 Xk � X k for all k ¼ 0; 1; . . . ;N � 1 ð3Þ
and initial condition

x0 ¼ x 2 X 0; ð4Þ
where

k indexes discrete time,
xk is the state of the system and summarizes past information that is relevant for future optimization,
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uk is the control variable to be selected at time k with knowledge of the state xk,
wk is a random parameter (also called disturbance or noise),
N is the horizon or number times control is applied,
Xk is a finite-dimensional space of state variables at stage k,
Uk is a finite-dimensional space of control variables at stage k,
Xk is a nonempty set in Uk.
Wk is a finite-dimensional space of random parameters at stage k.

A classical example for the problems (1)–(4) is the inventory control problem where xk plays a stock available at the
beginning of the kth period; uk plays a stock order at the beginning of the kth period and wk is the demand during the
kth period with given probability distribution; and the cost function has the form

PN�1
k¼0 cuk þ Hðxk þ uk � wkÞ together with

state equation xk+1 = xk + uk � wk (see [3] for details). For more information and necessary conditions of problem (1)–(4),
we refer the reader to [2,3,7,9–13,19].

Put W = W0 · W1 · � � � · WN�1, X = X0 · X1 · � � � · XN and U = U0 · U1 · � � � · UN�1. We denote by V(w) the optimal
value of the problem (1)–(4) corresponding to the parameter w = (w0,w1, . . . , wN�1) 2W. Thus V : W ! R is an extended
real-valued function which is called the value function of the problems (1)–(4).

The study of first-order behavior of value functions is of importance in analysis and optimization. An example of this
type is distance functions and its applications in optimal control problems with differential inclusions (e.g., [1,8,26]). There
have been many papers dealing with differentiability properties and the Fréchet subdifferential of value functions in the
literature (e.g., [6,16–18,21]). Under Lipschitzian conditions and the assumption that the solution set of perturbed prob-
lems is nonempty in a neighborhood of an unperturbed problem, Clarke [6, Theorem 6.52] established a useful formula
for the generalized gradient of a value function. By considering a set of assumptions which involves a kind of coherence
property, Penot [21] showed that the value functions are Fréchet differentiable. The results of Penot gave sufficient condi-
tions under which the value functions are Fréchet differentiable rather than formulas computing their derivatives. In [16],
Mordukhovich, Nam and Yen derived formulas for computing and estimating the so-called Fréchet subdifferential of value
functions of parametric mathematical programming problems in Banach spaces without Lipschitzian assumptions.

Besides the study of first-order behavior of value functions in parametric mathematical programming, the study of first-
order behavior of value functions in optimal control is also of interest of many researchers. We refer the reader to [20,22–
25] for recent studies on sensitivity analysis of the optimal-value function in parametric optimal control. In particular, See-
ger [24] obtained a formula for the approximate subdifferential of convex analysis of V to the case where hk and Xk were
assumed to be convex, and the problem can have no optimal paths. It is noted that if Xk and hk are convex for all
k = 0,1, . . . ,N, then V becomes a convex function. In this case, we can compute the subdifferential of V via subgradients
of convex functions. However, the situation will be more complicated if hk and Xk are not convex because subgradients of
convex functions fail to apply.

It is well recognized that the function V can fail to be smooth despite any degree of smoothness of hk. The aim of this
paper is to derive some new formula for computing the so-called Fréchet subdifferential of V via the tool of generalized
differentiation. In order to obtain the result, we first establish a formula for computing and estimating the Fréchet subdif-
ferential of the value functions for a special class of parametric mathematical programming problems (Theorem 2.1). Then
we apply Theorem 2.1 to prove Theorem 1.1 which is the main result of this paper. Our proof of Theorem 2.1 closely fol-
lows the method of [16]. However, we dealt with the formula of basic normals to set intersections in the product of Asplund
spaces and establish a formula for computing the normal cone of constraints sets.

Let us recall some notions related to generalized differentiation. The notions and results of generalized differentiation
can be found in [4,5,14,15]. Let u : Z ! R be a extended real-valued function on a finite-dimensional space Z and �x 2 Z
be such that uð�xÞ is finite. The set

ôuð�xÞ :¼ x� 2 X j lim inf
x!�x

uðxÞ � uð�xÞ � hx�; x� �xi
kx� �xk P 0

� �
ð5Þ

is called the Fréchet subdifferential of u at �x. A vector x� 2 bouð�xÞ is called a Fréchet subgradient of u at �x. It is known that
the Fréchet subdifferential reduces to the classical Fréchet derivative for differentiable functions and to subdifferential of
convex analysis for convex functions. The set ôþuð�xÞ :¼ �ôð�uÞð�xÞ is called the upper subdifferential of u at �x.

Let X be a nonempty set in Z. Given �z 2 X and � P 0, define the set of �-normal by

bN �ð�z; XÞ :¼ z� 2 Z� lim sup
z!�z

hz�; z� �zi
kz� �zk 6 �

����� �
: ð6Þ

When � = 0, the set bN ð�z; XÞ :¼ bN 0ð�z; XÞ is called the Fréchet normal cone to X at �z. It is also well known that if d(z,X) is the
indicator function of X, i.e., d(z,X) := 0 if z 2 X and d(z,X) :=1 otherwise, then bN ð�z; XÞ ¼ bodð�z; XÞ. A vector z* 2 Z* (the
dual space of Z) is called a limiting normal to X at �z if there exist sequences �k! 0+, zk ! �z, and z�k ! z� such that
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