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Abstract

This paper presents a preprocessing procedure for the 0—1 multidimensional knapsack problem. First, a non-increasing
sequence of upper bounds is generated by solving LP-relaxations. Then, a non-decreasing sequence of lower bounds is built
using dynamic programming. The comparison of the two sequences allows either to prove that the best feasible solution
obtained is optimal, or to fix a subset of variables to their optimal values. In addition, a heuristic solution is obtained.
Computational experiments with a set of large-scale instances show the efficiency of our reduction scheme. Particularly,
it is shown that our approach allows to reduce the CPU time of a leading commercial software.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we present a preprocesssing scheme for the 0—1 Multidimensional Knapsack Problem (MKP),
which can be formulated as

max E CiX;

JEN
s.t. Zai,-xj < bi, i€ ]\47
JeN
x;€{0,1}, je€N,
where N = {1,2,...,n} is the set of items, M = {1,2,...,m} is the set of knapsack constraints with capacities

b, associated weights a; and profits ¢;. The objective is to find a subset of items that yields a maximum profit.
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We assume that all the data a;, b;, ¢; are non-negative integers and, without loss of generality, that ¢; > 0,
b; >0, a; < b; forall je N and all i € M and ZjeNa,-j > b, forall i € M.

The MKP is typically encountered in the areas of capital budgeting and resource allocation. The paper by
Manne and Markowitz [27] is probably one of the earliest references to this problem. Other applications
include project selection, cutting stock, loading problems, determining the optimal investment policy for
the tourism sector of a developing country, and, more recently, delivery of groceries in vehicles with multiple
compartments, approval voting, multi-project scheduling, satellite communications. It also appears in a col-
lapsing problem and as a subproblem in large models for allocating processors and data bases in a distributed
computer system. Finally, the MKP model is more and more frequently used as a benchmark to compare gen-
eral purpose methods as metaheuristics.

In this paper we will often use shortcut notations for the problem like

max{cx:ax < b;, i€ M, x € B"},

or

maX{Zc,x/ : ZAJXJ < b, .Xj GB, ] GN},

JEN JEN
or simply

max{cx : Ax < b, x € B"}.

2. Related work

The multidimensional knapsack problem generalizes the well-known Knapsack Problem (KP) which deals
with only one constraint. As the single constraint case, the MKP is .4/"#2-hard but not strongly .4/"#-hard.
Polynomial approximation schemes exist for the single knapsack problem and some of them are generalized
for the MKP [6,13]. But while there are fully polynomial approximation schemes for m = 1, finding fully poly-
nomial approximations for m > 1 is A"#-hard [15,26].

Most of the research on knapsack problems deals with the much simpler single constraint case (m = 1). This
problem is very well studied and efficient exact and approximate algorithms have been developed for obtaining
optimal and near-optimal solutions. An extensive overview of exact and heuristic algorithms is given by Mar-
tello and Toth [29]. Randomly generated instances up to 250000 variables may be solved to optimality. Impor-
tant recent advances can be found in [30,34].

2.1. Exact methods

In contrast, the MKP is significantly harder to solve in practice than the KP. As soon as the number of
knapsack constraints increases, exact algorithms usually fail to provide an optimal solution of moderate size
instances in a reasonable amount of time. For example, one of the recent versions of CPLEX (6.5.2) is not able
to solve difficult problems with 100 variables and 5 constraints to optimality, because of the memory require-
ments of the search tree [33].

All general 0-1 integer programming techniques may be applied to the MKP [8,31,32]. Only the non-neg-
ativity of the coefficients distinguishes this problem from the general 0-1 integer programming problem. The
dense constraint matrix and the absence of special constraints, such as generalized upper bounds, special-
ordered sets, etc., complicate the development of efficient algorithms for the MKP. That is why relatively
few special-purpose algorithms address the MKP.

The development of exact algorithms for 0-1 integer programming began several decades ago [2,3,16,18].
Typically, these approaches start with preprocessing phase, finding lower and upper bounds of the objective
value and trying to reduce the problem size by fixation of variables and elimination of constraints. The second
phase is an implicit enumeration, which uses the preprocessing information.

The first special-purpose branch and bound algorithm for the MKP is published by Shih [38]. An upper
bound is obtained using the minimum of the LP-relaxation values associated with each of the m single
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