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a b s t r a c t

This study developed a weighted genetic programming (WGP) approach to study the squat wall

strength. The proposed WGP evolves on genetic programming (GP), an evolutionary algorithm-based

methodology that employs a binary tree topology and optimized functional operators. Weight

coefficients were introduced to each GP linkage in the tree in order to create a new weighted genetic

programming (WGP) approach. The proposed WGP offers two distinct advantages, including: (1) a

balance of influences is struck between the two front input branches and (2) weights are incorporated

throughout generated formulas. Resulting formulas contain a certain quantity of optimized functions

and weights. Genetic algorithms are employed to accomplish WGP optimization of function selection

and proper weighting tasks. Case studies herein focused on a reference study of squat wall strength.

Results demonstrated that the proposed WGP provides accurate results and formula outputs. This paper

further utilized WGP to tune referenced formulas, which yielded a final formula that combined the

positive attributes of both WGP and analytical models.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Soft computing approaches involve neural networks, fuzzy
logic, support vector machines, genetic algorithms (GA), genetic
programming (GP) and so forth. Each offers distinct merits when
employed in particular application categories. Back-propagation
neural network is the most familiar soft computing approach for
inference tasks, from which many neural network derivatives have
been developed and applied in various categories (Tsai, 2010;
Mehrjoo et al., 2008; Behzad et al., 2009). However, NN has been
argued primarily as a ‘‘black box’’ model, due to the massive
number of nodes and connections within its structure. Since first
proposed by Koza (1992), GP has earned significant attention in
terms of its ability to model nonlinear relationships for input–
output mappings. Baykasoglu et al. (2008) attempted to compare a
promising set of genetic programming techniques, including Multi
Expression Programming (MEP), Gene Expression Programming
(GEP), and Linear Genetic Programming (LGP) (Oltean et al., 2002;
Ferreira, 2001; Bhattacharya et al., 2001). Results revealed an LGP
to be the most efficient algorithm among those three for the
studied limestone strengths. Differences between the algorithms
focus primarily on the methodology used to generate an individual.
Chromosome representation, tree topology, and a linear string are
used, respectively, by MEP, GEP, and LGP. However, this paper

focuses on evolving programming formula types with a fully
weighted connection. Although, some formulas programmed by
MEP, GEP, and LGP have coefficients, such are all fixed constants
(Baykasoglu et al., 2008). Several researches employed GP
derivatives for problems in the construction industry. Baykasoglu
et al. (2009) employed GEP for concrete strength, cost, and slump.
Yeh and Lien (2009) proposed a genetic operation tree (GOT) to
study concrete strength. GOT employs tree topology (as does GEP)
and uses optimized coefficients different to other GP derivatives.
Coefficients do not frequently/completely occur in formulas
programmed by any of the aforementioned GP derivatives.

GP creates solutions as programs (formulas) to solve problems
using expression/operation trees. However, coefficient constants
are critical in order to balance nodal input influences in a
programmed formula. This paper introduces weight coefficients
to tree connections and generates a fully weighted formula. The
proposed model is a weighted genetic programming (WGP) and
optimized with GA.

Structural walls provide both earthquake resistance and cost
advantages, and reinforced concrete squat walls are widely
applied (especially in low-rise buildings) to provide shear action
seismic resistance. Hsu and Mo (1985) proposed a softened truss
model to predict squat wall shear strength, and Hwang et al.
(2001) presented their softened strut-and-tie model as a more
effective approach to squat wall modeling. Tsai followed previous
research to predict squat wall strengths, using both a high-order
back-propagation network (Tsai, 2009) and high-order neural
network derivatives (Tsai, 2010). Generally, analytical and neural
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models present specific advantages over each other. However,
analytical models must use certain assumptions in formulas to
work through problems, resulting in a level of accuracy often
inferior to that offered by neural network models, assuming the
latter use of sufficient historical data sets. A key drawback of
neural network models, however, is that predictions are invari-
ably supplied without accompanying formulas.

This paper utilizes genetic programming, a branch of soft-
computing, to achieve both prediction results and programmed
formulas. Genetic programming is improved by introducing the
concept of fully weighted connections that create weighted
genetic programming (WGP). Another contribution of this paper
is its integration of analytical and WGP formulas together to
obtain prediction results/formulas. Such confers the attributes of
analytical models on WGP results, i.e., tuning analytical formulas
with WGP.

The remaining sections of this paper include Section 2:
Proposed WGP and GA optimization; Section 3: Programming
shear strengths of squat walls to study WGP capacities and
further tune analytical formulas; and Section 4: Conclusions.

2. Weighted genetic programming optimized using a genetic
algorithm

The WGP adopted a layer number (NL) setting (see Fig. 1). Each
node x1

i in the first layer represented one of the input parameters
(including unit parameter ‘‘1’’)

x1
i ¼ one ð1 P1 P2 . . . Pj . . . PNIÞ, j¼ 0�NI ð1Þ

where x1
i represents nodes in the first layer and i denotes a

related node number; Pj is the jth input parameter; and NI

represents the number of inputs. Each i
1 node selects one attached Pj.

Layers from the second to the ‘eventual’ (i.e., the layer
immediately following the NLth) use operator nodes to calculate
values in the top–down order (see Fig. 2). For two adjacent layers,
x represents front nodes, which are treated as layer inputs, and y

denotes back nodes, which are treated as layer outputs. A y is
calculated by operators of two front x values. Operators involve
two weights (w) and one function (F). Elements in GP and WGP
are different in terms of connection weight. Number of scenarios
for a GP element depends on the number of function candidates

and is, therefore, finite. However, WGP introduces two complex
weights to balance nodal input influences. Number of scenarios
for each WGP element is infinite. Such an improvement offers
distinct advantages that include: (1) ability to search a wide
territory range with an infinite number of combination variations
and (2) the presence of weight coefficients throughout output
formulas. While calculating both appropriate weights and func-
tions for a WGP is more time consuming than for GP, such is a
worthwhile effort.

The layer after the NLth is called the ‘‘eventual layer’’ in the
final output/formula. The node in the eventual layer is either an
output node (O) or an operator node (y). Therefore, parameter
selections should be applied to the 2NL nodes in the first layer.
There are 2NL�1, 2NL�2, y, and 20 operator nodes in the 2nd,
3rd, y and eventual layers, respectively. Every operator node y is
operated by a set of defined functions in order to connect to two
front nodal inputs xi and xj with weights wi and wj.

y¼ Fðwi, wj, xi, xjÞ ¼ one of

f1 ¼ wixi

f2 ¼ ðwixiÞþðwjxjÞ

f3 ¼ ðwixiÞðwjxjÞ

f4 ¼ ðwixiÞ=ðwjxjÞ

f5 ¼ wixi

�� ��wjxj

f6 ¼ sinðwixiÞ

f7 ¼ cosðwixiÞ

f8 ¼ expðwixiÞ

f9 ¼ log wixi

�� ��
. . . :: . . .

fNF ¼
1

sinðwi xiÞþcosðwj xjÞ
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Fig. 1. Model structure for weighted genetic programming.
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Fig. 2. Comparison for weighted genetic programming and genetic programming

elements.
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