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a b s t r a c t

We design and implement a dynamic program for valuing corporate securities, seen as derivatives on a firm’s

assets, and computing the term structure of yield spreads and default probabilities. Our setting is flexible for

it accommodates an extended balance-sheet equality, arbitrary corporate debts, multiple seniority classes,

and a reorganization process. This flexibility comes at the expense of a minor loss of efficiency. The analytical

approach proposed in the literature is exchanged here for a quasi-analytical approach based on dynamic

programming coupled with finite elements. To assess our construction, which shows flexibility and efficiency,

we carry out a numerical investigation along with a complete sensitivity analysis.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.

1. Introduction

The option-based approach for valuing corporate bonds goes back

to Merton (1974). He considers a model for a firm with a simple cap-

ital structure made of a pure bond and a common stock (equity). He

interprets the stock as a European call option on the firm’s assets,

whose value follows a geometric Brownian motion, as set by Black

and Scholes (1973). The option’s expiry date and strike price are the

bond’s maturity date and principal amount, respectively. Then, he

evaluates the debt and equity in closed form. Merton’s pioneering pa-

per has given rise to an extensive literature, known as the structural

model, where corporate securities are expressed as derivatives on the

firm’s asset value. The default event at a given payment date occurs

when the state variable falls under a certain default barrier.

Black and Cox (1976) extend Merton’s model in two ways, and

solve the structural model in closed form. They propose an exoge-

nous default barrier to cover the pure bond’s holders against severe

decreases on the firm’s asset value before maturity. They also con-

sider uncovered bond portfolios made of a pure senior bond and a

pure junior bond with the same maturity. Geske (1977) uses the the-

ory of compound options, and further extends Merton’s model to ar-

bitrary corporate-bond portfolios. However, his analytical approach

remains questionable when the number of coupon dates increases.

Leland (1994) considers a continuous coupon perpetuity, which

results in a constant default barrier over time. Next, by maximizing
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the present value of equity, he solves for the so-called endogenous de-

fault barrier in closed form. He accounts for tax benefits under the

survival event and bankruptcy costs under the default event. These

frictions allow Leland to discuss the notions of maximum debt ca-

pacity and optimal capital structure. The latter is a break-down of the

Modigliani–Miller conjecture, which states that, in pure and perfect

capital markets, the firm’s asset value is independent of its capital

structure.

The aim of this paper is to design and implement a unified

dynamic-programming framework for valuing corporate securities

and computing the term structure of yield spreads and default prob-

abilities. This model extends Merton (1974), Black and Cox (1976),

Geske (1977), and Leland (1994), for it accommodates arbitrary

corporate debts, multiple seniority classes, payouts, tax benefits,

bankruptcy costs, and a reorganization process. The latter is fulfilled

through an augmentation of the state process, which now includes

not only the firm’s asset value but also the number of grace peri-

ods called for by the firm before the current date. The reorganiza-

tion and liquidation (default) barriers inferred at payment dates are

completely endogenous, and follow from an optimal decision pro-

cess. These extensions come at the expense of a minor loss of effi-

ciency. The analytical approach of the above-mentioned authors is

exchanged here for a quasi-analytical approach based on dynamic

programming coupled with finite elements.

Further extensions to Merton’s seminal paper in the literature

are twofold. The first research stream assumes a very simple firm’s

capital structure and solves the structural model in closed form.

Longstaff and Schwartz (1995), then Briys and de Varenne (1997),

consider a pure bond in Black and Cox’ setting with a Gaussian risk-
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Table 1a

Value functions at tn ∈ P without a reorganization process.

Balance-sheet Default: a ≤ b∗
n Survival : a > b∗

n
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Table 1b

Value functions at tn ∈ P with a reorganization process.

Balance-sheet Liquidation: a ≤ bl
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free rate. Their papers differ on the form of their exogenous default

barriers. Collin-Dufresne and Goldstein (2001) extend Longstaff and

Schwartz’s setting and allow for a Gaussian exogenous default bar-

rier. Along the same lines, Hsu, Saá-Requejo, and Santa-Clara (2010)

evaluate the pure bond in closed form when the firm’s asset value

is completely independent from the risk-free rate, which moves as

a square-root process. In case of dependence, they use Monte Carlo

simulation for valuation purposes. Nivorozhkin (2005a; 2005b) in-

troduce bankruptcy costs for uncovered bond portfolios in Black and

Cox’ setting. Starting from Leland’s framework, Leland and Toft (1996)

consider a finite-maturity coupon bond that is renewed as long as

the firm’s survives. Chen and Kou (2009) exchange the pure-diffusion

dynamics of the firm’s asset value of Leland and Toft for a double-

exponential jump-diffusion process. Then, they evaluate the debt

in closed form. Several authors extend the analytical approach to

analyze reorganization processes, especially under Black and Cox-

like settings (Abinzano, Seco, Escobar, & Olivares, 2009; Ericsson &

Reneby, 1998) or Leland-like settings (Bruche & Naqvi, 2010; François

& Morellec, 2004; Mella-Barral & Perraudin, 1997; Shibata & Tian,

2012).

The second research stream refers to numerical methods: numer-

ical integration (Moraux, 2004), finite differences (Anderson, Sun-

daresan, & Tychon, 1996; Brennan & Schwartz, 1978; Fan & Sundare-

san, 2000), binomial trees (Anderson & Sundaresan, 1996; Broadie,

Chernov, & Sundaresan, 2007; Broadie & Kaya, 2007), dynamic pro-

gramming (Annabi, Breton, & François, 2012a; 2012b), and Monte

Carlo simulation (Galai, Raviv, & Wiener, 2007; Zhou, 2001). Except

for Brennan and Schwartz (1978) and Zhou (2001), the rest of these

papers consider reorganization processes. Our paper differs from this

body of literature in that it handles an arbitrary debt portfolio and

several endogenous barriers for monitoring the reorganization pro-

cess, depending on the firm’s capital structure, debt seniority, and

reorganization design. Most of these papers build on Black and Cox

(1976) or Leland (1994) assumptions. Although Broadie et al. (2007)

assume a cash-flow-based framework and a consol debt, their bino-

mial tree resembles to our dynamic program in that it handles a dou-

ble endogenous barrier. Finally, our model differs from Annabi et al.

(2012a; 2012b) in two ways. Firstly, as claimed earlier, our setting ac-

commodates arbitrary debt portfolios, while theirs assumes a con-

tinuous perpetuity. Secondly, our reorganization process focuses on

the optimal number of grace periods a firm can call for, while theirs

focuses on the negotiation in between claimholders under default.

Among other objectives, the structural model attempts to ex-

plain the observed yield spreads and default frequencies. Despite

its parsimony, the simplest structural model (Merton, 1974) com-

pares extremely well to the classic statistical approach for bankruptcy

prediction (Hillegeist, Keating, Cram, & Lundstedt, 2004), and, to a

lesser extent, to the neural-network approach (Aziz & Dar, 2006). A

hybrid approach can be developed, where some of the statistical risk

factors are inferred from the structural model, e.g. the distance to

default (Benos & Papanastasopoulos, 2007). More complex structural

models have further explained the observed yield spreads and default

frequencies (Collin-Dufresne & Goldstein, 2001; Delianedis & Geske,

2001; 2003; Eom, Helwege, & Huang, 2004; Huang & Huang, 2012;

Leland, 2004; Suo & Wang, 2006). According to Delianedis and Geske

(2001), the most important components of credit risk are default, re-

covery, tax benefits, jumps, liquidity, and market factors.

On the one hand, closed-form solutions, where available, are obvi-

ously preferred to approximations. They are extremely efficient; they

assure the highest accuracy at a very low computing time. Closed-

form solutions explicitly link the unknown parameters to their input

parameters and, thus, allow for a direct sensitivity analysis. However,

they rely on very simplified assumptions. On the other hand, more

realistic models are solved by means of numerical procedures. Our

dynamic program is an acceptable compromise in terms of flexibility

and efficiency.

Dynamic programming is widely used for modeling and solving

several optimal Markov decision processes in finance. Examples in-

clude Kraft and Steffensen (2013) and Fu, Wei, and Yang (2014) for

optimal portfolios and Gamba and Triantis (2008) for financial flexi-

bilities.

This paper is organized as follows. Section 2 presents the model

and provides several properties of the debt- and equity-value func-

tions, and Section 3 proposes a reorganization process. Section 4 is

a numerical investigation, which replicates reported results from the

literature and carries out a complete sensitivity analysis. Section 5

concludes. The dynamic program is resolved in the Appendix A.

2. Model and notation

Consider a public company with the following capital structure:

a portfolio of senior and junior bonds and a residual claim, that is,

a common stock (equity). Let P = {t0, t1, . . . , tn, . . . , tN = T} be a set

of payment dates. At time tn ∈ P , the firm is committed to paying

ds
0

+ d
j
0

= d0 ≥ 0 and ds
n + d

j
n = dn > 0, for n = 1, . . . , N, to its credi-

tors (bondholders), where ds
n and d

j
n are the outflows generated at tn

by the senior and junior bonds, respectively. The total outflow dn in-

cludes interest as well as principal payments. The interest payments

are indicated by dint
n . The amounts ds

n, d
j
n, and dint

n , for n = 0, . . . , N,

are known to all investors from the very beginning. The last payment

dates of the senior and junior debts, both in P, are indicated by Ts

and Tj, respectively. Several authors consider a senior coupon bond

and a junior coupon bond with a longer maturity, that is, 0 ≤ T s <

T j = T . Senior bondholders are therefore assured payment before ju-

nior bondholders. This realistic case is embedded in our setting.

Assume that the firm’s asset value {A} is lognormal with A0 > 0, for

t ∈ [0, T]. The present value of tax benefits, bankruptcy costs, senior
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