
Pattern Recognition 42 (2009) 283 -- 292

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.e lsev ier .com/ locate /pr

A genetic programming framework for content-based image retrieval

Ricardo da S. Torresa,∗, Alexandre X. Falcãoa, Marcos A. Gonçalvesb, João P. Papaa, Baoping Zhangc,
Weiguo Fanc, Edward A. Foxc

aInstitute of Computing, University of Campinas--UNICAMP, 13083-970 Campinas, SP, Brazil
bDepartment of Computer Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
cDepartment of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

A R T I C L E I N F O A B S T R A C T

Article history:
Received 20 December 2007
Received in revised form 18 March 2008
Accepted 16 April 2008

Keywords:
Content-based image retrieval
Genetic programming
Shape descriptors
Image analysis

The effectiveness of content-based image retrieval (CBIR) systems can be improved by combining image
features or by weighting image similarities, as computed from multiple feature vectors. However, feature
combination do not make sense always and the combined similarity function can be more complex than
weight-based functions to better satisfy the users' expectations. We address this problem by presenting
a Genetic Programming framework to the design of combined similarity functions. Our method allows
nonlinear combination of image similarities and is validated through several experiments, where the
images are retrieved based on the shape of their objects. Experimental results demonstrate that the GP
framework is suitable for the design of effective combinations functions.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Advances in data storage and image acquisition technologies have
allowed the creation of large image data sets. In order to deal with
these data, it is necessary to develop appropriate information sys-
tems which can support different services. The focus of this paper is
on content-based image retrieval (CBIR) systems [1]. Basically, CBIR
systems try to retrieve images similar to a user-defined specification
or pattern (e.g., shape sketch, image example). Their goal is to sup-
port image retrieval based on content properties (e.g., shape, texture,
and color).

A feature extraction algorithm encodes image properties into a fea-
ture vector and a similarity function computes the similarity between
two images as a function of the distance between their feature vec-
tors. An image database can be indexed by using multiple pairs of
feature extraction algorithms and similarity functions. We call each
pair a database descriptor, because they tell how the images are dis-
tributed in the distance space. By replacing the similarity function,
for example, we can make groups of relevant images more or less
compact, and increase or decrease their separation [2]. These de-
scriptors are commonly chosen in a domain-dependent fashion, and,
generally, are combined in order to meet users' needs. For example,

∗ Corresponding author. Tel.: +551935215887.
E-mail addresses: rtorres@ic.unicamp.br (R.S. Torres), afalcao@ic.unicamp.br (A.X.

Falcão), mgoncalv@dcc.ufmg.br (M.A. Gonçalves), jpaulo@ic.unicamp.br (J.P. Papa),
bzhang@vt.edu (B. Zhang), wfan@vt.edu (W. Fan), fox@vt.edu (E.A. Fox).

0031-3203/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2008.04.010

while one user may wish to retrieve images based on their color
features, another one may wish to retrieve images according to their
texture properties.

Feature vector and descriptor do not have the samemeaning here.
The importance of considering the pair, feature extraction algorithm
and similarity function, as a descriptor should be better understood.
In CBIR systems, it is common to find solutions that combine image
features irrespective of the similarity functions [3]. However, these
techniques do not make sense, for example, when the image con-
tent is a shape and the properties are curvature values along it and
color/texture properties inside it. The similarity function usually has
a crucial role in making the descriptor as invariant as possible to
changes in image scale and rotation. This is true even when we con-
sider only shape descriptors. It does not make sense, for example, to
combine multiscale fractal dimensions [2] with bean angle statistics
(BAS) [4] irrespective of their similarity functions. The importance
of the similarity function coupled with the feature extraction algo-
rithm is illustrated in Fig. 1. Precision--recall curves were computed
from an MPEG-7 part B database [5] for four different descriptors.
They provide different combinations of feature extraction algorithms
that encode BAS [4] and segment saliences (SS) [6], with Euclidean
metric and matching by optimum correspondent subsequence (OCS)
[7] as similarity functions. We are not mixing properties, only re-
placing similarity functions, to show their role in the effectiveness
of each descriptor. Both SS and BAS have been proposed with OCS.
Fig. 1 shows that the configurations which use OCS yield the best
effectiveness.

http://www.sciencedirect.com/science/journal/pr
http://www.elsevier.com/locate/pr
file:rtorres@ic.unicamp.br
file:afalcao@ic.unicamp.br
file:mgoncalv@dcc.ufmg.br
file:jpaulo@ic.unicamp.br
file:bzhang@vt.edu
file:wfan@vt.edu
file:fox@vt.edu


284 R.S. Torres et al. / Pattern Recognition 42 (2009) 283 -- 292

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
R
E
C
IS
IO
N

RECALL

BAS+OCS
BAS+Euclidean

SS+OCS
SS+Euclidean

Fig. 1. Precision--recall curves for BAS and SS descriptors in MPEG-7 database using
two different similarity functions.

At a higher level, we really wish to combine descriptors encoding
several properties in order to address the semantic gap problem: it
is not easy for a user to map her/his visual perception of an image
into low level features. Without mixing distinct properties in a same
feature vector, this combination could be done by weighting the sim-
ilarity values resulting from different descriptors [8--10]. However,
more complex functions than a linear combination are likely to pro-
vide more flexibility in matching the results with the users' expec-
tations. We address the problem by presenting a genetic program-
ming (GP) framework to the design of combined similarity functions.
Our solution relies on the creation of a composite descriptor, which
is simply the combination of pre-defined descriptors using the GP
technique. We employ GP to combine the similarity values obtained
from each descriptor, creating a more effective fused similarity func-
tion. As far as we know, this approach is original and opens a new
and productive field for investigation (considering, for example, dif-
ferent applications, descriptors, and GP parameters).

Our motivation to choose GP stems from its success in many
other machine learning applications [11--13]. Some works, for ex-
ample, show that GP can provide better results for pattern recog-
nition than classical techniques, such as Support Vector Machines
[14]. Different from previous approaches based on genetic algorithms
(GAs), which learn the weights of the linear combination function
[15], our framework allows nonlinear combination of descriptors. It
is validated through several experiments with two image collections
under a wide range of conditions, where the images are retrieved
based on the shape of their objects. These experiments demonstrate
the effectiveness of the framework according to various evaluation
criteria, including precision--recall curves, and using a GA-based ap-
proach (its natural competitor) as one of the baselines. Given that it
is not based on feature combination, the framework is also suitable
for information retrieval from multimodal queries, as for example
by text, image, and audio.

The remainder of this paper is organized as follows. Section 2
gives the background information on GAs and GP. Section 3 intro-
duces a generic model for CBIR which includes the notion of simple
and composite descriptors. Section 4 presents a formal definition
of the combination function discovery problem and describes our
framework based on GP. Section 5 describes several experiments,
which validate our approach, while Sections 6 and 7 discuss the
main achieved results and related works, respectively. In Section 8
we conclude the paper, explaining implications of this study and
presenting future research directions.

2. Background

2.1. Genetic programming

GAs [16] and GP [11] belong to a set of artificial intelligence
problem-solving techniques based on the principles of biological in-
heritance and evolution. Each potential solution is called an individ-
ual (i.e., a chromosome) in a population. Both GA and GP work by
iteratively applying genetic transformations, such as crossover and
mutation, to a population of individuals to create more diverse and
better performing individuals in subsequent generations. A fitness
function is available to assign a fitness value for each individual.

The main difference between GA and GP relies on their inter-
nal representation---or data structure---of an individual. In general,
GA applications represent each individual as a fixed-length bit
string, like (1101110 . . .) or a fixed-length sequence of real numbers
(1.2, 2.4, 4, . . .). In GP, on the other hand, more complex data struc-
tures are used (e.g., trees, linked lists, or stacks [17]). Fig. 2 shows
an example of a tree representation of a GP individual.

Furthermore, the length of a GP data structure is not fixed, al-
though it may be constrained by implementation to be within a cer-
tain size limit. Because of their intrinsic parallel search mechanism
and powerful global exploration capability in a high-dimensional
space, both GA and GP have been used to solve a wide range of hard
optimization problems that oftentimes have no known optimum so-
lutions.

2.2. GP components

In order to apply GP to solve a given problem, several key compo-
nents of a GP system need to be defined. Table 1 lists these essential
components along with their descriptions.

The entire combination discovery framework can be seen as an
iterative process. Starting with a set of training images with known
relevance judgments, GP first operates on a large population of ran-
dom combination functions (individuals). These combination func-
tions are then evaluated based on the relevance information from
training images. If the stopping criteria is not met, it will go through
the genetic transformation steps to create and evaluate the next gen-
eration population iteratively.

GP searches for good combination functions by evolving a popu-
lation along several generations. Population individuals are modified
by applying genetic transformations, such as reproduction, mutation,
and crossover. The reproduction operator selects the best individuals
and copies them to the next generation. The two main variation op-
erators in GP are mutation and crossover. Mutation can be defined
as random manipulation that operates on only one individual. This
operator selects a point in the GP tree randomly and replaces the
existing subtree at that point with a new randomly generated sub-
tree [18]. The crossover operator combines the genetic material of
two parents by swapping a subtree of one parent with a part of the
other (see Fig. 3).

sqrt

x

* x

y

y

+

/

Fig. 2. A sample tree representation.



http://isiarticles.com/article/79756

