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a b s t r a c t

The majority of the scheduling studies carry a common assumption that machines are available all the
time. However, machines may not always be available in the scheduling period due to breakdown or pre-
ventive maintenance. Taking preventive maintenance activity into consideration, we dealt with the two-
machine flowshop scheduling problem with makespan objective. The preventive maintenance policy in
this paper was dependent on the number of finished jobs. The integer programming model was proposed.
We combined two recent constructive heuristics, HI algorithm and H algorithm, with Johnson’s algo-
rithm, and named the combined heuristic H&J algorithm. We also developed a constructive heuristic,
HD, with time complexities O(n2). Based on the difference in job processing times on two machines, both
H&J and HD showed good performance, and the latter was slightly better. The HD algorithm was able to
obtain the optimality in 98.88% of cases. We also employed the branch and bound (B&B) algorithm to
obtain the optimum. With a good upper bound and a modified lower bound, the proposed B&B algorithm
performed significantly effectively.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Most studies on scheduling assume that machines are available
throughout the planning horizon. However, in practice, machines
are not always available (Pinedo, 2002). That is, machines may
not be available during the scheduling horizon due to breakdown
(stochastic) or preventive maintenance (deterministic). Taking pre-
ventive maintenance activity into consideration, we dealt with a
flowshop scheduling problem with limited machine availability.

In capital-intensive industry, production generally proceeds
on a continuous basis and the availability of production centers
at all time is very important. Nevertheless, maintenance activi-
ties have to be performed. Possible events that necessitate main-
tenance operations include: (1) the occurrence of a failure
(failure-based maintenance); (2) the elapse of a certain amount
of time or usage (use-based maintenance); and (3) the tested
condition of a unit (condition-based maintenance) (Art, Knapp,
& Lawrence, 1998). For recent surveys of problems with limited
machine availability, refer to Sanlaville and Schmidt (1998) and
Schmidt (2000). However, research on these problems has
started only recently.

Johnson’s rule is well known for the case of continuous machine
availability, making the problem of minimizing the makespan easy
to solve for two machines. Lee (1997) proved the problem to be
NP-hard when an interval of non-availability (or hole, for short)

occurs, and then developed a pseudo-polynomial dynamic pro-
gramming algorithm to optimally solve the problem. Lee presented
two heuristic algorithms. The first heuristic had a worst-case error
bound of 1/2 for the case in which the hole occurred on the first
machine. The second heuristic with a worst-case error bound of
1/3 for the case in which the hole occurred on the second machine.
Similarly, Cheng and Wang (2000) studied the problem with the
holes occurred on the first machine. Their heuristic had a worst-
case error bound of 1/3. Breit (2004), studying the holes occurring
on the second machine, proposed a heuristic with a worst-case er-
ror bound of 1/4. Cheng and Wang (1999) considered a special case
where the availability constraint is imposed on each machine, but
the two availability constraints are consecutive.

Lee (1999) considered the two-machine flowshop problem un-
der the assumption that if a job cannot be finished before the next
down period of a machine, then the job must be restarted partially
when the machine becomes available again. His model was called
semi-resumable. The model contained two important special
cases: resumable where the job can be continued without any pen-
alty and non-resumable where the job must be totally restarted.
Lee also developed a pseudo-polynomial dynamic programming
algorithm to optimally solve the problem and proposed heuristic
algorithms with an error bound analysis.

Blazewicz, Breit, Formanowicz, Kubiak, and Schmidt (2001)
studied a two-machine flowshop problem where machines are
unavailable in given time intervals. They analyzed two construc-
tive heuristics, Johnson’s algorithm and look-ahead heuristic, and
a heuristic based on simulated annealing (SA). Blazewicz et al. con-
cluded that the SA-based heuristic is a more effective approach.
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Kubiak, Blazewicz, Formanowicz, Breit, and Schmidt (2002)
proved that no polynomial time heuristic with a finite worst-case
bound may exist when at least two holes are allowed to occur.
Their study also showed that makespan minimization becomes
NP-hard in the strong sense even if arbitrary number of holes occur
on one machine only. Most important, Kubiak et al. proved two
important properties of optimal schedules for the two-machine
flowshop, a theory which serves as the framework of the current
paper. They further developed a branch and bound algorithm
based on the proposed properties.

Some papers stated that machines are available in time win-
dows, which is true in computer systems. Aggoune, Mahdi, and
Portman (2001) and Aggoune (2004) considered a flowshop prob-
lem with availability constraints, and provided two approaches to
dealing with the maintenance activities: either starting time of the
maintenance tasks are fixed or the maintenance tasks must be per-
formed on a given time window. Aggoune et al. proposed a heuris-
tic based on genetic algorithm to solve the makespan and the total
weighted tardiness minimization problems. Aggoune developed a
heuristic based on genetic algorithm and tabu search to solve the
makespan minimization problem.

Most studies on machine availability take into consideration the
elapse of a certain amount of time or usage (use-based mainte-
nance). However, Dell’Amico and Martello (2001) considered a
practical assembly line for printed circuit boards. They asserted that
the machine is not available after processing a fixed number of jobs
to allow for time precision adjustment of the machines. That is, the
time periods of preventive maintenance activities are dependent
on the number of finished jobs. Liao, Chen, and Lin (2007) provided
an algorithm to solve two parallel machines where there are one
or more unavailability intervals for each machine. The algorithm
had exponential time complexities, but it could optimally solve the
various-sized problems in reasonable computation time.

This paper dealt with the two-machine flowshop scheduling
problem with makespan objective. The preventive maintenance
policy was dependent on ‘‘the number of finished jobs”. We com-
bined two recent constructive heuristics, HI algorithm (Cheng &
Wang, 1999, 2000) and H algorithm (Breit, 2004), with Johnson’s
algorithm, and named the heuristic H&J algorithm. We also devel-
oped a constructive heuristic, HD, which is based on the difference
in the jobs’ processing times on two machines. In order to evaluate
the performance of H&J and HD, we further developed a branch
and bound algorithm with a modified lower bound. Compared with
the optimum solution, H&J was able to obtain optimality in 1562
out of 1600 instances (97.63%), and HD was able to obtain optimal-
ity in 1582 out of 1600 instances (98.88%). Both H&J and HD
showed good performance, and the latter was slightly better.

The rest of the paper is organized as follows. Section 2 defines
the terminology and constructs an integer programming model.
Section 3 addresses basic properties of optimal solution and the
development of two constructive heuristics, H&J and HD algo-
rithms. A branch and bound algorithm (B&B algorithm) with a
modified lower bound is constructed in Section 4. The performance
of HD algorithm is evaluated in Section 5. The final section draws
the conclusions of this work.

2. Terminology and integer programming model

Given n jobs to be processed in a two-machine flowshop, we de-
fine the following notations:

Jj job j, j = 1, . . . ,n
J[j] the job at the jth position of schedule
Mi machine i, i = 1, 2
pi,j processing time for Jj on Mi

ti length of hole on Mi

xi the number of finished jobs, the preventive maintenance
policy on Mi

hi,[j] the index of Mi is available after the jth job. hi,[j] = 1 if Mi is
not available (hole) after the jth job; hi,[j] = 0 if Mi is avail-
able after the jth job, i.e., hi,[j] = 1 if j/xi is integer; hi,[j] = 0,
otherwise.

zj,k the index of job j is scheduled at the kth position. zj,k = 1 if
job j is scheduled at the kth position; zj,k = 0, otherwise.P
schedule of jobs 1,. . .,n.

J
P
k For a given schedule

P
the holes partition jobs into dis-

joint subsets, the subset contains jobs completed on M1 be-
tween starting points of the kth and the (k + 1)th holes.

Ci,j the completion time for Jj on Mi.
Ci,[l] the completion time of the lth ranked job on Mi.
C1,max makespan‘, C1,max = C1,[n] = max{C1,j, j = 1,. . .,n}.
Cmax makespan,Cmax = C2,[n] = max{C2,j, j = 1,. . .,n}.
Sa set of jobs before executing forward insert.
Sb set of jobs before executing backward insert.
dj difference in processing time for Jj on M1 and M2, dj = p1,j-p2,j.

In order to describe the problem clearly, an integer program-
ming model is presented. The decision variables and auxiliary vari-
ables are zj,k and Ci,[l], respectively. The parameters are pi,j, ti, xi and
hi,[j]. The mixed integer programming model with n2 + 2n variables,
including n2 binary variables and 2n variables, and 5n constraints is
formulated. The model is formulated as follows.

Objective function:

min C2;½n�

Subject to:

Xn

j¼1

zj;k ¼ 1; k ¼ 1;2; . . . ;n ð1Þ

Xn

k¼1

zj;k ¼ 1; j ¼ 1;2; . . . ; n ð2Þ

C1;½l� ¼
Xl

k¼1

Xn

j¼1

ðzj;k � p1;jÞ þ
Xl

k¼1

ðh1;½k�1� � t1Þ; l ¼ 1;2; . . . ;n ð3Þ

C2;½l� P C1;½l� þ
Xn

j¼1

ðzj;l � p2;jÞ; l ¼ 1;2; . . . ;n ð4Þ

C2;½l� P C2;½l�1� þ h2;½l�1� � t2 þ
Xn

j¼1

ðzj;l � p2;jÞ; l ¼ 1;2; . . . ;n ð5Þ

hi;½j� 2 f0;1g; i ¼ 1;2; j ¼ 1;2; . . . ;n ð6Þ
zj;k 2 f0;1g; j; k ¼ 1;2; . . . ;n ð7Þ

Constraint (1) specifies that exactly only one job can be sched-
uled to position k for any job j. Constraint (2) specifies that job j has
to be scheduled to exactly one position. Constraint (3) defines the
completion time of the lth ranked job on M1. Constraints (4) and (5)
insure that a job’s completion time on M2 is no earlier than that
job’s completion time on M1 plus that job’s processing time on
M2 and its previous job’s completion time on M2 plus that job’s
processing time on M2.

3. The proposed solution methods

In this section, two critical properties of optimal schedules are
described and two heuristics, H&J algorithm and HD algorithm,
are proposed.

3.1. Basic properties

The two properties of optimal schedules, Lemmas 1 and 2,
which were initially provided by Kubiak et al. (2002), were used
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