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a b s t r a c t

This paper presents an alternative approach to the dual response systems problem by utilizing a tabu
search algorithm that yields a string of solutions and examine the trade-offs graphically and systemati-
cally how the controllable variables simultaneously impact the mean and the standard deviation of a
characteristic of interest relevant to an industrial process. Heuristic-based search techniques may be very
useful for cases where interactive multi-objective optimization techniques are not available due to lack of
willingness of decision-makers. A further advantage of tabu search is its simplicity and we show that the
entire process only occupies a few lines of codes and generates string of solutions in speedy manner espe-
cially for the larger-the-better/smaller-the-better cases of Taguchi’s robust parameter design. The proce-
dure is illustrated with an example.
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1. Introduction

In today’s increasingly competitive marketplace more attention
is being paid to off-line quality control and the idea of robust prod-
uct design. Recent advances in quality technology have resulted
from considering the variation of a quality characteristic as well
as its mean value. Taguchi and Wu (1985) and Taguchi (1986) have
been a major proponent of this philosophy. The recent push for
quality improvement in industry has brought response surface
methodology (RSM) to the attention of many users (Khuri, 1996).
In the 1990s, much attention was given to the optimization of dual
response systems (DRS) as an important RSM tool for quality
improvement. In our context, the dual response refers to the mean
and the standard deviation of the process.

Taguchi’s robust parameter design (RPD) calls for simultaneous
optimization of the mean and standard deviation responses. The
RPD problem is a special case of the multiple response problems,
where two responses, the mean and variance of a fundamental re-
sponse/characteristic observed during the experiment. The DRS
problem requires an overall optimization – that is a simultaneous
satisfaction with respect to both the mean and the standard devi-
ation of a quality characteristic. Basically one builds two empirical
response surface models – one for the mean and one for the stan-
dard deviation – and then optimizes one of the responses subject
to an appropriate constraint on the other’s value. The decision
how to use the dual response approach to achieve the basic goals
of Taguchi’s philosophy depends upon the ultimate purpose of

the experiment. Vining and Myers (1990) adapted to the three ba-
sic cases of RPD, i.e., ‘‘larger-the-better’’, ‘‘smaller-the-better’’, and
‘‘target-is-best’’. In the larger-the-better/smaller-the-better cases,
one seeks the settings of the control parameters that maximize/
minimize the mean response while controlling the standard devi-
ation at some specified value. In the target-is-best case, one is
interested in minimizing the standard deviation while keeping
the mean response at a specified target value. In each of three
cases, a solution is found under an additional constraint on the
vector of control variables. Let x = [x1, . . . , xk] be a k � 1 vector of
control variables. If a factorial type design is used for the purpose
of experimentation, then a cuboidal region, defined by
�1 6 xi 6 1, i = 1, 2, . . . , k (k is the number of control variables),
may be a good choice for defining the region of interest. When
using a spherical type design (e.g., a central composite design),
the additional constraint is defined by x0x 6 q2 where q is the
design radius.

A major drawback of selecting the most dominant response as
the objective function and then taking the other one as a constraint
(i.e., single objective optimization) imposes an unnecessary restric-
tion on the value of secondary response especially when dealing
with the larger-the-better/smaller-the-better cases. Keeping the
standard deviation below a specified value may rule out better
conditions during the optimization process, since an acceptable va-
lue for the standard deviation response is usually unknown. In fact,
process conditions that result in a smaller standard deviation are
often preferable. Recently, Köksoy and Doganaksoy (2003) realized
that the standard deviation of any performance property could be
treated as a new property in its own right as far as Pareto optimizer
was concern (i.e., multi-objective optimization). The interaction
among different conflicting objectives gives rise to a string of
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solutions, called Pareto optimal solutions. Pareto solutions are
those for which improvement in one objective can only occur with
the worsening of at least one other objective. Thus, instead of a un-
ique solution to the problem, the solution to a multi-objective
problem is a (possibly infinite) set of Pareto points. Since none of
these alternative solutions can be identified as better than others
without any further examination, the goal in multi-objective opti-
mization is to find as many alternative solutions as possible in
speedy manner. Once such set of compromised solutions is found,
it usually requires a higher level decision making with other con-
siderations to choose one of them for implementation. We believe
that such analysis is useful compared to a single optimal solution,
and that is required in order to achieve an improved understanding
of the problem before searching for a final optimal solution.

Even though we support and follow the main philosophy pro-
posed by Köksoy and Doganaksoy (2003), their optimization
method, namely the NIMBUS (Nondifferentiable Interactive Multi-
objective Bundle-based Optimization System) algorithm, based on
interactive articulation of preference information has the following
difficulty in applications: the interest devoted to interactive meth-
ods can be explained by the fact that assuming the decision maker
has enough time and capabilities for co-operation. The conver-
gence is not necessarily fast if the decision maker is not purposeful.
The freedom of the decision maker has both positive and negative
aspects. The decision maker can direct the solution process and is
free to change her or his mind during the process. Because of the
subjectivity of the decision makers, different starting points, differ-
ent types of questions or interaction styles may lead to different fi-
nal solutions.

In order to overcome the difficulties associated with the optimi-
zation method of Köksoy and Doganaksoy, we propose a tabu
search algorithm for finding the Pareto solutions for the DRS prob-
lem. First we convert the problem into a scalar one by using a
weighted linear sum of the objectives and then optimize the
weighted objective function. The major advantage of the proposed
formulation is that it does not require any constraints on the sec-
ondary response. Unlike the NIMBUS method, the proposed tabu
approach does not set any specific assumptions on the behavior
or the preference structure of the decision maker. It means that
the proposed method will still work and generate many alternative
solutions whether or not the decision maker has enough time and
capabilities for co-operation.

The rest of the paper is organized as follows. In the next section
we present a revised problem formulation of the DRS problem. We
then briefly review the fundamental concepts of tabu search. This
is followed by a numerical example that illustrates the proposed
approach. We conclude the paper with a summary. The proposed
tabu search algorithm is described in the Appendix.

2. Revised problem formulation of the DRS problem

Assume that an appropriate 2nd order response surface exper-
iment is conducted. Let l̂ and r̂ denote the fitted response surfaces
of the process mean and standard deviation, respectively. Assume
that these responses may be modelled by

l̂ ¼ b0 þ
Xk

i¼1

bixi þ
Xk

i¼1

biix2
i þ

XXk

i<j

bijxixj ð1Þ

r̂ ¼ a0 þ
Xk

i¼1

aixi þ
Xk

i¼1

aiix2
i þ

XXk

i<j

aijxixj ð2Þ

where the b’s and a’s represent the estimated coefficients, and the
x’s are the control variables (x e R, where R is a region of interest).
Therefore, the DRS optimization problem for the smaller-the-better
case may be defined as:

Minimizeðw1l̂þw2r̂Þ ð3Þ

x 2 R

where w1 and w2 are pre-specified positive constants which are
chosen based on the relative importance of the mean and standard
deviation responses, usually obtained through the advice of experts
on the process of interest. The objective is to find the settings of x’s
that would optimize the weighted objective function subject only to
the constraint that defines the region of interest R. As mentioned
earlier, we consider two different regions of interest, cuboidal and
spherical. For the larger the better case, the mean should be maxi-
mized therefore w1 is replaced with (�w1) for solving the DRS prob-
lem using the tabu algorithm. The proposed formulation of the DRS
problem is directly applicable for the smaller-the-better and the lar-
ger-the-better cases of RPD. The target-is-best case, however, needs
a preset constraint on the value of the mean response function and,
thus, the weighted objective optimization is not necessary. In some-
what limited manner by changing the weight values in Eq. (3) one
can still find string of solutions for the target-is-best case, however,
this case can be more directly addressed by a single objective opti-
mization (e.g., Del Castillo and Montgomery (1993) or Copeland and
Nelson (1996)).

3. A brief overview of tabu search

Tabu search is a local search-based metaheuristic method that
has been successfully applied to a wide class of hard optimization
problems. Appropriate subject areas include bioengineering, fi-
nance, manufacturing, scheduling, and political districting. It was
first presented by Glover (1986) and also sketched by Hansen in
1986.

Tabu search uses a short-term memory structure called a ‘tabu
list’. A potential solution is marked as ‘‘tabu’’ so that the algorithm
does not visit that possibility repeatedly. Tabu search starts with
an initial solution. Algorithms based on tabu search perform a
neighborhood search (i.e., a local search) starting from a current
solution to its best neighbor (the one with the best objective value
among all examined candidates). Tabu search modifies the neigh-
borhood structure of each solution as the search progresses. All
the neighbors of a current solution are examined and the best
non forbidden move is selected. Note that this move may decrease
the quality of the solution, but necessary in order to increase the
likelihood of escaping from so-called local optimum ‘‘traps’’. A tabu
list stores all the previously exploited moves or solutions which are
now forbidden. The search continues until some stopping criterion
has been satisfied. To avoid cycling during the search process, the
reverses of the last certain number of moves, formed as a tabu list,
are prohibited or announced as tabu restricted for certain number
of iterations (i.e., the tabu duration). To prevent a too rigorous
parameter settings of the tabu restriction, some aspiration criteria
are usually introduced which allow overriding the tabu restriction
and thereby to guide the search toward a promising region. Inten-
sification and diversification strategies with tabu search are also
applied to emphasize and broaden the search in the solution space,
respectively. More discussion can be found in articles by Chao
(2002), Vilcot and Billaut (2008), and Caserta and Uribe (2009).

The basic components of the tabu algorithm are outlined below:

1. Configuration: Coding of a solution.
2. Move: Selected feasible direction of the search.
3. Set of candidate moves: Feasible directions of the search.
4. Tabu restrictions: The length of the tabu list.
5. Aspiration criteria: Overriding the tabu restriction.
6. Stopping condition: Terminating the search.
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