I3C4N

Image Edge Orientation Estimation via Fuzzy Logic

Reshmalakshmi Ca, Sasikumar Mb

aLBS Institute for Science and Technology, Trivandrum
a,bDept. of Electronics, Marian Engineering College, Kazhakuttam, Trivandrum

Abstract

This paper proposes a novel image edge orientation estimation using fuzzy logic approach. The idea behind orientation estimation is to design edge directed image interpolation for image super resolution enhancement. The calculation of image edge pixel orientation is based on different types of gradients measured across different angles from particular edge pixel. Orientation of edge pixel is classified into nine angles to ensure the quality of orientation estimation. The advantage of proposed fuzzy based method is that, orientation calculation is done in human language with the help of simple fuzzy rules. Use of simple membership function and rules helps to design an efficient orientation estimation framework. The experimental results show that fuzzy based orientation estimation outperforms even if the image is affected by noise.

Keywords: fuzzy logic; image interpolation; orientation estimation; pixel gradients

1. Introduction

Edge is one of the prominent image feature that help in human perception and computer vision applications such as feature extraction, pattern recognition, image segmentation, and texture and edge analysis. Nowadays, super resolution enhancement is becoming a challenging area of image processing which requires detailed analysis on edge pixel. Image pixel characteristics such as edge, texture and orientation must be identified properly to design different image resolution enhancement algorithms. This work proposes to design an edge based orientation estimation approach in fuzzy domain which has the ability to map uncertainty. There are enormous image edge and line detection methods proposed by researchers in the field of image processing [1]-[3]. Since edge pixel is defined on the basis of pixel illumination variation, compared to its neighbouring pixels, one simple way to identify edge
pixel is through pixel gradients. In this paper we propose to use the idea of finding maximum gradient from a set of
gradients calculated in different directions to detect edge pixels. Orientation is calculated from these edges using
fuzzy inference framework.

There are different types of edge detectors available which are sensitive to certain types of edges. We have
considered only few of them. In [4]-[9] different gradient based edge detection methods such as Robert, Sobel,
Prewitt and Canny is discussed to have an idea on existing techniques. The simple and quick cross gradient operator,
Robert, is designed to detect edges running 45º to the pixel grid. Whereas, Sobel [5] and Prewitt operators help to
identify horizontal and vertical edge line, in which later is highly sensitive to noise. Canny [8] and [9] edge operator
performs even better and known as optimum edge detector. But it is computationally more expensive compared
other gradient approach. In addition, the performance of canny edge operator can be improved even better by
thresholding but it tries to exhibits hysteresis. Furthermore, Gaussian based Laplacian operator even outperforms
but is sensitive to noise. A comparative study on different edge detection method [10] states that all these methods
are limited by precision.

Many of these edge detection methods can be used for orientation estimation too. But only precise edge detection
leads to accurate orientation estimation. The usual way of finding orientation is from horizontal and vertical edge
gradients as illustrated below:

\[
\theta = \tan^{-1}\left(\frac{G_y}{G_x}\right)
\]

(1)

Where, \(G_x\) and \(G_y\) are the horizontal and vertical pixel gradients mentioned in the edge detection operation. Most of
the orientation estimation technique is designed on spatial domain. In [11], a spatial domain approach, gradients are
generated by applying Gaussian orientation filter separately on both coherence and angle image obtained from
texture image. Bigun et al. in [12] proposed a frequency domain approach of least square estimation based
orientation estimation. Double orientation estimation framework work is introduced in [13]. In [14], to divide image
gradients, a clustering based approach is employed. PCA based approach along with SVD is proposed in [15]. All
these methods fail if the image is affected by noise. In addition, it is a common practice to use fuzzy logic based
design methodology if the system is affected by noise.

An image is said to uncertain if it is affected by any kind of noise. It is necessary to identify these uncertainties
properly to design an efficient processing algorithm. The well known uncertainty mapping tool available is the fuzzy
inference logic system [16]. The main advantage of using fuzzy based approach is the ability to design a system in
human language using simple mathematical descriptions.

The motivation of proposed work is to use fuzzy logic technique in the field of image processing for image edge
orientation estimation. Furthermore, orientation can be defined clearly, linguistically (using human language), using
fuzzy inference technique rather than mathematically. The use of human kind language and simple rule help to
design an efficient algorithm for orientation estimation. To implement the idea of proposed method, orientation is
classified in to nine different angles, represented using nine membership functions in fuzzy domain that helps to
improve accuracy of designed system. The experimental results show that the use of fuzzy based gradient approach
performs better than both spatial and frequency domain approaches even the system is affected by noise.

The rest of the paper is organized as follows. Section 2 describes existing edge detection methods. The concept of
fuzzy based orientation estimation method is presented in Section 3. Section 4 gives description on experimental
results and conclusion is drawn in Section 5.

2. Edge detection methods

This section describes existing and fuzzy inference based edge detection methods. It should be noted that
orientation is calculated only for identified edge pixels. So the first step is to apply an edge detection method that
leads to orientation estimation.

Edge detection is a critical step in orientation estimation because; the inaccurate detection may lead to design
inefficient orientation estimation algorithm. A pixel is identified as edge if the difference in intensities between
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات