A parallel Lagrange algorithm for order acceptance and scheduling in cluster supply chains

Jizi Li, Xianyi Zeng, Chunling Liu, Xinjian Zhou

PII: S0950-7051(17)30422-7 DOI: 10.1016/j.knosys.2017.09.021
Reference: KNOSYS 4042

To appear in: Knowledge-Based Systems

Received date: 23 February 2017 Revised date: 10 September 2017 Accepted date: 15 September 2017

Please cite this article as: Jizi Li, Xianyi Zeng, Chunling Liu, Xinjian Zhou, A parallel Lagrange algorithm for order acceptance and scheduling in cluster supply chains, Knowledge-Based Systems (2017), doi: 10.1016/j.knosys.2017.09.021

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
A parallel Lagrange algorithm for order acceptance and scheduling in cluster supply chains

Jizi Li1,3, Xianyi Zenga2, Chunling Li1, Xinjian Zhou3

1 Department of Management Science and Engineering, School of Management, Nanchang University, Nanchang, 330031, China
2 Department of Product Design and management, Ecole Nationale Supérieure des Arts et Industries Textiles, Roubaix, 30329, France
3Research Center of Supply chain System, Wuhan Textile University, Wuhan, 430073, China.

ARTICLE INFO

Article history:

Key words:
Across-chain cooperation
Cluster supply chains
Order acceptance
Capacity scheduling
Parallel Lagrange algorithm

ABSTRACT

In a single supply chain scenario, orders are likely to be refused for lack of insufficient capacity and production time. In this paper, cluster supply chains (a kind of multiple supply chains, short for CSC) is introduced to avoid this potential operational risk via across-chain cooperation, which is not considered in any previous work. First, the framework of order selection in cluster supply chain (CSC) is presented based on four order categories (direct order, reserve order, across-chain order and rejected order), followed by that the model without and with across-chain cooperation in cluster supply chains are proposed to aid operational managers to make joint decision regarding order acceptance and scheduling under maximizing the overall profit. Considering the complexity of cluster supply chains structure and a mass of data from actual operations, a parallel Lagrange heuristic algorithm is devised to solve the Mixed Integer Non-Linear Program (MINLP) problem. Meanwhile, Benders algorithm is utilized to compare with it for evaluating performance. The result proves the parallel Lagrange heuristic algorithm outperforms Benders approach, the former can efficiently solve large-scale-data problem instances at relatively short time. The outcomes also reveal that, by designing the different combination of the factor of rejected order and that of across-chain order, it can be better trade-off between order due-date and cost while better aligning with the long-term business strategy in cluster supply chains.

1. Introduction

The widespread use of digital technologies, such as Twitter, Facebook, Wechart, Palpay and Alipay, etc, has led to the development of big data business analytics as an important tool, it offers firms with the better way to gain values from an increasingly mass amount of data and sharps their competitive edges[2]. Big data refers to high-volume, high-speed, and high-variety set of dynamic data larger than that is manageable by the conventional data analytical approaches [3,26,27,34]. Big data carries the opportunity to change traditional business model and day-to-day decision making [13,20,35].

Due to its important and unique role of supply chain management in improving the overall business performance, big data analytics in supply chain management has attracted growing significant attention from scholars and decision makers in organizations [8,10]. The reason is that nowadays supply chain management is a transfer from simple local supply chain network to more complex and sophisticated global supply chain / cluster supply chains (CSC) network structure (a kind of multiple supply chains) [25,28]. Without the effective big data optimization, it can trigger inefficiencies and poor performance, such as delayed orders, disrupted supplies, suspended shipments, and fluctuating exchange rate, among others [42]. On the other hand, ever-changing environment arises some new emerging economic phenomenon over the world, among which the across-chain cooperation in cluster supply chains is the case. Based on Firms Economics Analysis Reports in China [32], 54% of surveyed firms in China has launched and implemented the across-chain cooperation strategy in cluster supply chains, it means across-chain cooperation in cluster supply chains is becoming a more common practice for improving firm’s performance (i.e. production flexibility) in China.

Cluster supply chains is a kind of multiple supply chains located at a close geographic site called industrial
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات