A full-duplex working integrated optoelectronic device for optical interconnect

Kai Liu *, Huize Fan, Yongqing Huang, Xiaofeng Duan, Qi Wang, Xiaomin Ren, Qi Wei, Shiwei Cai
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, China

ARTICLE INFO

Keywords:
Optoelectronic integration
VCSEL
RCE-PD
Laser
Optical interconnect

ABSTRACT

In this paper, a full-duplex working integrated optoelectronic device is proposed. It is constructed by integrating a vertical cavity surface emitting laser (VCSEL) unit above a resonant cavity enhanced photodetector (RCE-PD) unit. Analysis shows that, the VCSEL unit has a threshold current of 1 mA and a slope efficiency of 0.66 W/A at 849.7 nm, the RCE-PD unit obtains its maximal absorption quantum efficiency of 90.24% at 811 nm with a FWHM of 4 nm. Moreover, the two units of the proposed integrated device can work independently from each other. So that the proposed integrated optoelectronic device can work full-duplex. It can be applied for single fiber bidirectional optical interconnects system.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Accompanying the rapid developing demands for high speed optoelectronic and electronic devices, which are generated from the applications of ultra-wideband communications in the data center, 5G wireless system, cloud computing and supercomputer fields etc., the interconnect technology tends to utilize the optical links to overcome the drawbacks of the electric interconnects, like high power consumption, channel interference and complicated channel electrical isolation etc. Such optical links use optoelectronic devices like vertical cavity surface emitting laser (VCSEL) [1], light emitting diode (LED) [2], uni-traveling-carrier photodetector (UTC-PD) [3], PIN photodetector [4], modulator [5]. Sometimes, optics structure and semiconductor diode will be integrated with them [6,7]. Among them, VCSEL is the most utilized transmitting device for short distance (less than 300 m) optical interconnects due to its benefits of low power consumption, high modulation speed, and high coupling efficiency to multimode fiber etc. To further increasing integration level at the fiber end, some attempts of integrating light transmitting and receiving functions into only one chip, based on VCSEL structure, have been made [8,9]. They are either integrating a PIN photodetector under a VCSEL to monitor the VCSEL’s backlight, or integrating a resonant cavity enhanced photodetector (RCE-PD) with a VCSEL laterally. In this paper, based on our former research results of a multi-cavity wavelength selective photodetector [10], an efficient full-duplex working optoelectronic integrated device is proposed. It is constructed by integrating a VCSEL on top of a RCE-PD. With such an integration scheme, the integrated device’s performance will be benefited from the high speed photo-response advantages of the RCE-PD. Moreover, since for a RCE-PD, certain top reflectance is required for obtaining its maximal quantum efficiency, such an integration scheme can be optimized for compensating for the designing and manufacturing reflectance losses generated from the VCSEL to the PD at some extent and make the integrated device more feasible to be realized. And because the device’s two units are integrated vertically and coaxially, it will simplify the chip’s future coupling scheme to a multimode fiber while being used for application of bi-directional full-duplex optical interconnects in single fiber and lower the packaging cost at the same time.

2. Device design

The structure of the proposed full-duplex working integrated optoelectronic device is shown in Fig. 1. It is composed of a VCSEL unit at the top and a RCE-PD unit at the bottom. To make such a device working full-duplex, electrical performances isolation and optical functions decoupling between its two composing units must be accomplished. The electrical performances isolation is accomplished by inserting an insulating layer between Mirror M1 and Spacer Cavity. It can be realized by growing a 51 nm thick Al$_{0.98}$Ga$_{0.02}$As layer during the device’s structure epitaxy and then transferring the Al$_{0.98}$Ga$_{0.02}$As layer...
to a 30 nm thick Al$_2$O$_3$ insulating layer with wet oxidation process. The optical functions decoupling is accomplished by wavelength division multiplexing scheme. Since full-duplex working is required for the proposed integrated optoelectronic device, a particular working optical spectrum of it will be set. The transmitting light wavelength of it is set to be around 850 nm, while the receiving light wavelength of it is set to be around 810 nm.

From the VCSEL unit’s point of view, since it is on the top of the integrated optoelectronic device, firstly it should emit lasing light from the top at a wavelength around 850 nm, while at the same time let the receiving light at a wavelength around 810 nm passing through it with low loss. Secondly its backlight should be minimized and have little effect on the RCE-PD unit’s performance. Therefore, in the VCSEL unit’s structure design, Mirror 1 is composed of 50 layers of n-doped Al$_{0.1}$Ga$_{0.9}$As and Al$_{0.9}$Ga$_{0.1}$As films, which includes 21 pairs of one-quarter wavelength DBR and 8 phase compensation layers. It has an optimized reflectance spectrum, which has reflectivities of higher than 99% at wavelength around 850 nm and lower than 20% at wavelength around 810 nm. Mirror M1 is composed of 60 layers of n-doped Al$_{0.1}$Ga$_{0.9}$As and Al$_{0.9}$Ga$_{0.1}$As DBR, which has a reflectivity of higher than 99% covering the wavelength range from 810 nm to 850 nm. Moreover, according to the RCE-PD’s performance optimization theory, since its un-doped GaAs absorption layer’s thickness is 300 nm, the optimized reflectivity of the RCE-PD unit’s top mirror should be around 75%. For the proposed integrated optoelectronic device, its RCE-PD unit’s equivalent top mirror is composed of the VCSEL unit, the Spacer Cavity and Mirror M2. Therefore, the structure of the Spacer Cavity and Mirror M2 should be optimized accordingly on the basis of the optimized VCSEL unit’s structure. The optimized results are a 400 nm thick n-doped Al$_{0.1}$Ga$_{0.9}$As spacer cavity and 10 pairs of n-doped Al$_{0.1}$Ga$_{0.9}$As/ Al$_{0.9}$Ga$_{0.1}$As aperiodic DBR composed Mirror M2. The optimized reflectance spectrum of the RCE-PD unit’s equivalent top mirror is shown in Fig. 3. It has a reflectivity of 77% around wavelength of 810 nm, which assures a high absorption quantum
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات