ScienceDirect

Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

IFAC PapersOnLine 50-1 (2017) 470-475

Automatic Modeling with Local Model
Networks for Benchmark Processes

Julian Belz * Tobias Miinker * Tim O. Heinz *
Geritt Kampmann * Oliver Nelles *

* Automatic Control - Mechatronics, University of Siegen, Germany
(e-mail: julian.belz@uni-siegen.de).

Abstract: In this paper an automated model generation framework is used to identify three
nonlinear dynamic benchmark processes. The nonlinearity is approximated using tree-based
local model networks (LMN) with external dynamics, which are represented by three different
approaches: NARX, NFIR and NOBF. The automated method assumes no prior knowledge
about the process, and aims to be a ready-to-use tool for system identification. Results are
given for the different approaches and benchmark processes. The importance of the choice of
training data for a good generalizing model performance is discussed.
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1. INTRODUCTION

Nonlinear system identification of dynamic systems is
still a challenging research area. This paper is con-
cerned with the application of an automated model gen-
eration framework (based on local model networks) to
three proposed benchmark systems (Bouc-Wen, Wiener-
Hammerstein, Cascaded Tanks). The main goal here is to
obtain as much information about the system from given
data as possible, without the use of any process specific
prior knowledge. It will be interesting to see how this
approach performs compared to algorithms incorporating
specific knowledge used for these benchmark processes by
other authors. The following results will be provided:

e A thorough description of the different levels of auto-
matic modeling for dynamic systems.

e The application of tree based local model networks
(LMN, here e.g. HILOMOT) for the benchmark prob-
lems using three different dynamic representations
(NARX, NFIR and NOBF!) and a report of the
respective figures of merit.

e An analysis of different input signals and the effect of
the black-box model performance is provided for the
Bouc-Wen system.

First, in Sec. 2, the concept of an automated model gen-
eration framework is presented. The general aspects such
an approach has to cover are: Selection of training data
(design of experiments), determination of relevant inputs,
choice of the (dynamic) structure and the identification of
the (hyper-) parameters of the model. A brief description
is given how these aspects are addressed by the methods
used in this paper. Section 3 presents the results for the
automated identification of the three benchmark systems.
Finally, in Sec. 4, a conclusion is given.

1 The prefixed N’ indicates the usage in combination with a
nonlinear approximator for all three dynamic structures.

2. A FRAMEWORK FOR AUTOMATIC MODEL
GENERATION

2.1 The Vision of Automatic Modeling

Nonlinear system identification of discrete time dynamic
systems focuses on identifying a relationship

y(k):f(u(k)au(k_1)v~'~7u(k_n)v (1)
yk—1),...,y(k—n))

from a given dataset D = {u(k),y(k)}llv, where f(-)
is some nonlinear mapping, u(k) is the input of the
system and y(k) is the output of the system at the
discrete time step k. In the subsequent sections we will
use the term automatic modeling to describe the nested
optimization process of model building depicted in Fig. 1.
For complete automatic modeling these several levels have
to be optimized subsequently by the applied method.
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Fig. 1. Hierarchical structure of the nested optimization
problems to be solved in automatic modeling.
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Design of Exzperiments — The design of experiments (DoE)
is the first step, when identifying dynamic systems. In the
current contribution we restrict our attention to input
signals for nonlinear systems which are fixed a priori.
Nevertheless it is a possible subject for further research
to investigate active learning for nonlinear systems, which
integrates the generation of an appropriate input signal in
the identification process.

Relevant Inputs  The next step is especially relevant for
systems with multiple inputs and determines which of
the available inputs affects which output. Though this
step is of high importance for real world systems, the
benchmark systems investigated contain only one input
and one output signal, so that this step is not of such a
high relevance for the investigation.

Dynamic Structure Furthermore the order of the delayed
input and output signals used for the identification re-
mains to be determined. Many approaches leave this choice
to the user and for practical applications second order
models are often argued to be sufficient. Nevertheless for a
true automatic model generation from data the derivation
of the relevant delayed values is necessary.

Structural Complexity  The last three steps consider
the structure of the nonlinear approximator. Structural
complexity in this context means the complexity of the
nonlinear approximator used. This can be the number of
layers and neurons for a multilayer perceptron, the number
of local models for a local model network or simply the
number of basis function for a parametric approximator.
There are several possible choices to determine the struc-
tural complexity, among the most common is Akaike’s
information criterion, cross validation or the validation on
a separate validation data set.

High-Level Parameters Additionally parameters are di-
vided in high-level and low-level parameters. This distinc-
tion corresponds to the fact that it makes a substantial
difference, if a parameter can be obtained by applying
the least squares method or if for the determination a
nonlinear optimization process is necessary. Examples for
high-level parameters are the hyperparameters of Gaus-
sian process models or the nonlinear parameters in the
HILOMOT split optimization routine.

Low-Level Parameters Low-level parameters can be ob-
tained by applying least squares and are compared to high-
level parameters relatively cheap to compute.

Many advanced system identification algorithms do not
automatically consider all aforementioned steps. In prac-
tical applications the all remaining steps are left to the
user. For example direct-weight optimization proposed in
Roll et al. (2005) does consider the dynamic order of the
system to be known. Nevertheless recently the dynamic
order problem is incorporated in the automated routine
by the usage of Gaussian process models as described by
Pillonetto et al. (2011).

2.2 Nonlinear Approzimator Framework

For the identification of nonlinear dynamic systems, the
dynamics have to be represented and the nonlinearity has

to be approximated. Three dynamic model structures are
pursued here, see Section 2.3, all following the external
dynamics approach depicted in Fig. 2. In this approach
inputs and outputs are sent through an external filter bank
followed by a nonlinear static approximator as described in
Nelles (2001). In contrast to internal dynamics approaches
there is no internal memory inside the nonlinear static
approximator. The outputs of the external filter bank ¢ (k)
serve as inputs for the nonlinear static approximator and
the mapping from the filter outputs to the process output
y(k) can be approximated by a static model.
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Fig. 2. External dynamics approach: External filter bank
followed by a nonlinear static approximator.

Here, local model networks (LMNs) are used as the non-
linear static approximator for all dynamic structures. This
model type follows a divide-and-conquer strategy. The
whole input space, here spanned by the filter bank outputs
p(k), is divided into subregions. In each subregion a local
model (LM) ¢; is estimated. So called validity functions
®; define regions in which the LMs are valid and how
interpolation between neighboring LMs should be con-
ducted. According to Murray-Smith and Johansen (1995)
the model output § of a LMN with M LMs is calculated
by

M
§=> §i(x)®;(2) with
i=1

@ C p(k) and z C (k). (2)
As indicated in (2) the inputs for the LMs @ and the
inputs for the validity functions z are subsets of filter
bank outputs ¢ (k). Note that the subsets  and z can be
chosen independently, i.e. they can be completely distinct
(z Nz =0), identical (x = z) or anything in between.

Two well known algorithms are used in this work to
train the LMNs, which are LOLIMOT (LOcal LInear
MOdel Tree - Nelles and Isermann (1996)) and HILOMOT
(HIerarchical LOcal MOdel Tree - Nelles (2006)). For
details about the LOLIMOT and HILOMOT training
procedures readers are referred to Nelles and Isermann
(1996) and Nelles (2006), respectively.

2.8 Dynamic Structure Selection

Nonlinear AutoRegressive with eXogenous input (NARX)

For the identification of nonlinear dynamic systems,
the NARX structure is probably the most common. The
transfer functions of the external dynamics (see Fig. 2) are
simplified to:

G"(q)=q ", ie{0,...,m}
GW(g)=q7",ief{l,...,n}.
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