Synthesis of 3-aza[4.4.3]propellanes with high σ_1 receptor affinity

Héctor Torres-Gómeza,b, Constantin Daniliuc, Dirk Schepmann, Bernhard Wünscha,d

a Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
b NRW Graduate School of Chemistry, Westfälischen Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 10, D-48149 Münster, Germany
c Organisch-Chemisches Institut der Westfälischen Wilhelms-Universität Münster, Corrensstraße 40, D-48149 Münster, Germany
d Cells-in-Motion Cluster of Excellence ((EXC 1003 – CiM), University Münster, Germany

Abstract

In order to obtain rigid σ_1 receptor ligands with defined orientation of pharmacophoric elements, the azapropellane scaffold was chosen. Schmidt rearrangement of propellan-8-ones 6 and 10 provided 3-aza-azapropellane-4-ones 7 and 11. Benzoylation of the secondary lactams 7 and 11 followed by LiAlH4 reduction furnished the azapropellanes 4a and 4c, respectively. A second hydrophobic element was introduced by transformation of the alcohols 4a into carbamates 4b. The σ_1 affinity of the azapropellanes 4 is strongly dependent on the stereochemistry and the substitution pattern in 12-position. anti-configured azapropellanes anti-4a and anti-4b show higher σ_1 affinity than their syn-configured counterparts syn-4a and syn-4b. Conversion of the alcohol anti-4a into the carbamate anti-4b led to increased σ_1 affinity, but complete removal of the 12-substituent resulted in the highest σ_1 affinity ($K_i(4c) = 17 \text{ nM}$). It can be concluded that the propellane scaffold alone is able to form strong lipophilic interactions and stabilize the ligand-σ_1 receptor complex as does usually the primary hydrophobic region.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The class of σ receptors consists of two subtypes, which are termed σ_1 and σ_2 receptors. The σ_1 receptor is found in the central nervous system and in peripheral organs such as liver, lung and heart. It has been shown that ligands blocking the σ_1 receptor can be used for the treatment of neuropathic pain. The pyrazole derivative S1RA (E-52862), which is currently entering phase 3 clinical trials for the indication neuropathic pain, is currently the most advanced σ_1 ligand. Moreover, it has been reported that σ_1 antagonists have antipsychotic and antiaddiction activity. On the contrary, σ_1 agonists reveal beneficial effects in neurodegenerative and neuroinflammatory conditions (e.g. Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, stroke, Multiple sclerosis). In the field of oncology therapeutic and diagnostic applications of σ receptor ligands are intensively discussed.

Although several reports define particular compounds as agonists and others as antagonists, the positive or negative effect of σ_1 ligands on a relevant biochemical pathway remains to be elucidated.
resulted in 2 with high σ receptor affinity but reversed selectivity. Carbamate 2 displays a 30-fold preference for the σ₂ subtype, which binds 2 in the low nanomolar range (Ki(σ₂) = 3.1 nM). The promising results with the bicyclic systems 1 and 2 led to the idea to use the [4.3.3]propellane system as conformationally rigid scaffold, which was decorated with appropriate substituents. Propel-lanes bearing the benzylamino moiety and the same carbamate as 2 displayed high σ₁ affinity only in case of syn,syn-configuration, i.e. both substituents have to be oriented towards the larger tetramethylene bridge. As a result carbamate syn,syn-3 shows moderate σ₁ affinity (Ki = 77 nM) with retaining selectivity over the σ₂ subtype. Among all diastereomers, the syn,syn-configured diastereomer syn,syn-3 has the longest distance of 11.1 Å (global energy minimum) between the basic amino moiety and the center of the phenyl ring (see Fig. 1). Compared with the lead compounds 1 and 2 this distance is rather long. Pharmacophore models also suggest a slightly shorter distance than calculated for syn,syn-3. In order to learn more about the correlation between the distances of the pharmacophoric elements and σ receptor affinity and subtype selectivity, 3-aza[4.4.3]propellanes 4 containing the basic N-atom within the framework were envisaged. In addition to reduced distances of the pharmacophoric elements, the conformational flexibility of 4 is further reduced by incorporating the N-atom into the propellane core. (Fig. 1)

Herein, we report on the synthesis and pharmacological evaluation of novel σ receptor ligands 4 based on the 3-aza[4.4.3]propellane scaffold.

2. Chemistry

The synthesis of the carbamates 4b started with propellane-8,11-dione (5), which was obtained by a Weiss-Cook reaction as previously described. In 1983 Ginsburg et al. reported their attempts to synthesize azapropellanes from diketone 5 via Beckmann rearrangement. However, all conditions to rearrange the corresponding bis-oxime failed to give an aza- or diazapropellane. Therefore, the rearrangement of propellane derivatives with only one carbonyl moiety was envisaged.

Selective reduction of only one of the keto groups of 5 with NaBH₄ led to a 1:1 mixture of diastereoisomeric alcohols syn-6 and anti-6, which could not be separated by flash chromatography. Therefore, the diastereomeric alcohols syn-6 and anti-6, were prepared by acetalization of one carbonyl moiety of diketone 5. L-Selectride reduction of the free ketone, separation of the diastereomeric alcohols and cleavage of the ethylene ketal (Scheme 1). Recrystallization of syn-7 led to colorless crystals, which were suitable for X-ray crystal structure analysis. (Fig. 2) Both enan-tiomers of syn-7 are present in the unit cell of the crystals. Pairs consisting of two molecules with the same absolute configuration are formed by two H-bonds between the NH-proton and the car-
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات