AN INVESTIGATION OF REFRIGERANT LEAKAGE IN COMMERCIAL REFRIGERATION

Christina FRANCIS, Graeme MAIDMENT, Gareth DAVIES
London South Bank University, 103 Borough Road, London, SE1 0AA,
Email: francic8@lsbu.ac.uk

Highlights

- Comprehensive analysis of a large number of F-gas leakage records was conducted.
- A methodology of categorizing refrigerant leakage incidents is summarized.
- Common locations and system components prone to leakage are identified.
- Long term solutions to control refrigerant leakage are discussed.

ABSTRACT

Given that refrigerant demand is set to rapidly increase, long term solutions for leakage prevention are required to effect change in the industry. This paper presents the results of a project which investigated refrigerant leakage within two of the UK’s major supermarket chains. Leakage data from 1,464 maintenance records were analysed. The analysis categorized the type, location of each leak and volume of refrigerant replaced during repair. Over 82% of the recorded leaks were from R404A refrigeration systems, and mainly consisted of pipe or joint failures or a leaking seal/gland/core located in the compressor pack and the high pressure liquid line. It is recommended that the industry focuses on improving design, installation and maintenance of pipework and valves, at the components that most often develop faults to minimize refrigerant leakage.

KEYWORDS
Refrigerant, leakage, F-gas emissions, supermarkets

1. INTRODUCTION

A study by Gschrey et al. (2011) indicated that the contribution of fluorinated gases (F-gases) to global warming will increase from approximately 1.3% (2004) to 7.9% (2050) of projected total anthropogenic CO₂ emissions in a business-as-usual scenario. Gschrey et al. highlighted that additional efforts are required from both developed and developing countries in order to achieve significant reductions in F-gas emissions. Many refrigerants used in RACHP (refrigeration, air conditioning and heat pump) systems are F-gases (Bauer et al., 2015). Leakage of refrigerant gases from these systems impacts the environment in two ways (Koronaki et al., 2012). Firstly there is a direct effect due to the global warming potential (GWP) of the leaked gas, and secondly, there is an indirect effect due to the decreased efficiency of the refrigeration system (due to the loss of charge) which leads to increased energy consumption (Grace et al., 2005). In particular, emissions of hydrofluorocarbons (HFCs) refrigerants have been increasing mainly due to their widespread use as replacements for chlorofluorocarbons (CFCs), and hydrochlorofluorocarbons (HCFCs) (Montzka et al., 2014). This is in addition to the rapidly increasing demand for RACHP systems in emerging economies (Davis and Gertler, 2015).

Commercial refrigeration is considered to be one of the applications that contribute most to global warming (Mota-Babiloni et al., 2015a). The growth in the commercial refrigeration sub-sector is of concern, since it is reported to have the highest CO₂-equivalent emissions for the whole RACHP industry equivalent to 40% of total annual refrigerant emissions (UNEP, 2014), despite it being responsible for only 22% of worldwide refrigerant consumption (Devotta et al., 2005). Leakage in commercial refrigeration systems varies greatly from one system to another (Coulomb, 2008). Annual leak rate can be an average of 11% (Koronaki et al., 2012) and up to 30% in some cases (Beshr et al., 2015). Refrigerant leakage can also have a significant
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات