The Profitability of Vehicle to Grid for System Participants - A Case Study from the Electricity Reliability Council of Texas

Vivek Bhandari
Humphrey School, University of Minnesota, USA
Siemens Digital Grid, Minnesota, USA

Kaiyang Sun
BIOPAC System, California, USA

Frances Homans
Department of Applied Economics, University of Minnesota, USA

Abstract
Operating costs and market rules are likely to have an impact on the rewards of participating in a Vehicle to Grid system. This paper investigates these impacts by developing a model of a centralized Vehicle to Grid system and applying it to the 2015 wholesale electricity market in Texas (Houston Hub) for selling energy and capacity. Three scenarios are examined. In the first scenario, electric vehicles are paid based on a fixed retail market price; in the second, they are paid a time-varying retail market price; in the third, the virtual power plant shares 50% of its total reward with the participating vehicles. The results demonstrate that, while this system is always financially profitable to the virtual power plant and the system operator gets grid services, the electric vehicles could lose money. Further, results show that these vehicles with lower per unit output-battery cost could lose more money because of extensive battery over-use and insufficient reward at current market prices. Lower battery costs, subsidies for participation in this system, and more rewarding market products could all make their participation more economically viable.

Keywords: Electric vehicles, Electricity market, Vehicle to Grid

Highlights
1. A centralized architecture-based Vehicle to Grid system is modeled.
2. Dynamic Programming and Unit Commitment are used for determining rewards.
3. Rewards to electric vehicle owners are based solely on electricity prices.
4. Repeated charge/discharge cycles reduce battery life in electric vehicles.
5. Without compensation for battery life, rewards to vehicles are insufficient.

Abbreviations
BAU Business As Usual
BESS Battery Energy Storage System (BESS)
CAISO California Independent System Operator
DA Day Ahead
EV Electric Vehicles

Email address: bhand029@umn.edu (Vivek Bhandari)
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات