Accepted Manuscript

Energy and material efficiency of steel powder metallurgy

José M.C. Azevedo, André Cabrera Serrenho, Julian M. Allwood

PII: S0032-5910(18)30009-3
DOI: doi:10.1016/j.powtec.2018.01.009
Reference: PTEC 13095

To appear in: Powder Technology

Received date: 1 June 2017
Revised date: 18 October 2017
Accepted date: 5 January 2018

Please cite this article as: José M.C. Azevedo, André Cabrera Serrenho, Julian M. Allwood, Energy and material efficiency of steel powder metallurgy, Powder Technology (2018), doi:10.1016/j.powtec.2018.01.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Abstract

Concern about global warming motivates the reduction of greenhouse gas emissions from manufacturing but as yet the environmental impact of the whole powder metallurgy production chain has not been assessed. This paper therefore traces the flow of energy and material through the major powder metallurgy processes from liquid steel to final products and assesses the efficiency of both energy and material use. The results show that there is significant opportunity for reducing energy and material requirements in delivering products. Specific opportunities such as avoiding lasers in additive manufacturing or minimizing heat losses in powder sintering are proposed and evaluated.

Keywords: powder metallurgy, steel, efficiency.

1 Introduction

Powder metallurgy processes provide opportunities that are not available when using material in the conventional form: melting is not required in order to form complex components and the rapid solidification typical of powder production allows for use of highly alloyed compositions. Concern about global warming has led to agreement on national and international targets to reduce greenhouse gas (GHG) emissions [1]. Industry is responsible for 35% of all energy/process emissions [2, p. 13]. Emissions from steel powder metallurgy are currently only a small portion of industrial emissions but may become more significant with the rapid growth of processes such as metal additive manufacturing. Wohlers and Associates [3, p. 123], for example, reported that material sales increased

* +44 (0) 1223 332672; jmca3@cam.ac.uk
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات