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a  b  s  t  r  a  c  t

A  stochastic  model  is proposed  for  fluctuations  in  electricity  demand  that are  associated  with individual
user’s  consumption  choices.  Electricity  consumption  is modeled  as  a function  of social  activities  of  con-
sumers.  The  dynamics  of  these  activities  are  modeled  as  a Markov  chain.  Markov  models  are  simplified
models  that  capture  the stochasticity  to the  unmodeled  dynamics  typically  attributed  to  white  noise
disturbances.  Additional  uncertainties  are  also  accrued  in  the  process  of  calibrating  the  transition  rates
of these  chains  from  finite  samples.  In this  paper,  these  uncertainties  are  accounted  for  by  considering
random  transition  matrices.  Such  formalism  can  also  reflect  the  fluctuations  in the  environment  in which
the  chain  evolves.  We  also  discuss  a  third interpretation  where  uncertain  transitions,  in a  multiscale  set-
ting, reflect  the  fine-resolution  information  that  is  lost  in  the  process  of  state  aggregation.  As numerical
demonstration,  we  study  the  activity  modeling  of a heterogeneous  population.  Activity  uncertainties  are
propagated  onto  the  energy  demand.  Demand  uncertainties,  in  turn,  are  propagated  onto  a global  per-
formance  metric.  Such  uncertainty  management  framework  bridges  between  the  actual  drivers  of  the
energy  consumption  and  the  system  health.  Subsequent  decisions  can  be robustly  supported  based  on
the  results  of  the  quantitative  model  proposed  in  this  paper.
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1. Introduction

Demand side management represents one of the current fron-
tiers in capitalizing on Smart Grid technologies. It consists in
controlling the condition of the energy systems by modifying the
electricity demand. This is in contrast with the way conventional
protocols were defined. Before the advent of Smart Grid technolo-
gies, in the face of an anticipated instability, the sole option for
system operators has been to increase the generation capacity. Such
response needs to take effect fast enough to prevent irreversible
transients. Thus, a reserved generation is scheduled to always spin
at a minimal speed in order to expedite its potential load serv-
ing task. However, even this minimal operation of the reserved
units is costly. This traditional approach is inefficient, especially
in a Smart Grid with large energy extraction from unreliable non-
dispatchable and/or renewable energy resources. In such cases,
the large generation-side uncertainties will further increase the
dependence on reserve units.

As mentioned earlier, demand side management is a more eco-
nomical paradigm which aims at the modification of the electrical
load for grid efficiency [1–3]. Factors such as the electricity price
can be used to control demand. A major challenge, however, is to
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predict the ‘demand response’, that is the way consumers react
to the dynamic pricing (see e.g. [4–7]). As a prerequisite to a
demand response model, an accurate predictive model for the diur-
nal dynamics of energy consumption, which is the subject of this
research, should be constructed. In addition to their significance
in demand side management procedures, these predictive demand
models can also be used in hourly demand forecast, and subse-
quently assist in maintenance, operations, and capital planning, as
well as in potential load shedding planning [8].

There are various modeling approaches for demand modeling
[9–12]. One of the most commonly used approach is based on
time series analysis, such as autoregressive (AR) and autoregressive
moving average (ARMA) processes [13,14]. In order to account for
nonlinearities in the load parameters, the method of support vec-
tor machines has been proposed to solve the nonlinear regression
problems of load forecast [15]. Neural networks and variants on
Kalman filter have also been proposed for load forecast and state
estimation [16,17,14]. In all these approaches, the models fail to
provide insight and quantitative measures regarding the depend-
ence of demand on influential underlying factors such as activity
patterns of users.

Our objective in the present study is to build a demand model
based on the daily activity patterns of consumers. The motivation
for such formalism is two-fold. First, activities of consumers are
indeed the actual driver for their consumption behavior. Second,
with the aid of new smart telecommunication devices and gadgets,
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the activity patterns of individuals have become increasingly more
observable, providing an unprecedented opportunity for validation
and update of the demand model in a Smart City. Activity-based
energy demand models have been studied in [18–21], where the
dynamics of the daily activities was modeled by a Markov chain.
What distinguishes our model from previous Markovian demand
models is the random treatment of the transition matrices. This
additional uncertainty in the parameters of the Markov chain is
assumed to account for the calibration error due to scarcity of data
and/or the loss of information due to upscaling in state space. The
inclusion of this uncertainty will provide decision makers with
quantified confidence in the predicted quantities of interest (QoI)
and therefore assist in the robust management of energy systems.
We use a Maximum Entropy probability measure, proposed in [22],
to characterize the uncertainty in these matrices.

In the present paper, we first describe the Markov chain model-
ing approach for the social activities of the consumers. This model
is extended to include uncertainty in the transition matrices. The
theoretical development for such extension leading to a probability
measure for transition matrices is described. Associated with this
uncertainty will be an uncertainty in predicted demand with impli-
cations on predicted system performance. In this paper, we  focus
on the small-signal stability of the system as the system’s perfor-
mance metric. Technical description of this performance metric is
included in Section 3. Finally, we illustrate the application of this
model using an actual Time-Use dataset obtained in 2011. In this
section, we also illustrate how the uncertain treatment of Markov
transition matrices can be used to reflect the information lost in the
upscaling of activity states. This section is concluded by the numer-
ical results on the stability analysis of a representative grid given
activity-based stochastic demand.

2. Activity-based models for stochastic demand

Traditional demand models relying on time-series analysis fail
to incorporate the dependence of energy demand on underlying
influential factors. Our objective is to develop a model that relies
on the activity patterns at the scale of an individual as the actual
factors driving energy consumption. In order to model domestic
electricity consumption, several bottom-up high resolution mod-
els have been proposed [23–25]. A major challenge in using such
models is that their mathematical forms should be simple enough
to be computationally tractable. As mentioned earlier, we develop
a model for the activity patterns of the individuals, based on which
electricity can be predicted. In Smart Cities, these activity patterns
are becoming increasingly more observable, due to the wide use of
smart mobile devices and other sensing technology.

There are high resolution models for residential electricity con-
sumption that incorporate information on the social activities of
consumers by using Time-Use (TU) data (see, e.g. [18–21]). TU data
can serve as a highly realistic estimator of the behavioral factor in
the consumption pattern. It is extracted from the survey done on a
representative pool of respondents, and by definition is the amount
of time individuals spend on various activities, such as paid work,
childcare, volunteering, and socializing during a typical day. The
proposed models aim to predict the individuals behavioral pattern.
Specifically, they construct a Markov chain determining the way
individuals transition between different activities.

In the TU survey, a large number of activity types are considered.
The first step in developing a Markov chain for the activity dynam-
ics is the choice of the resolution in the activity space. In other
words, the modeler should decide how to cluster the large num-
ber of detailed activity identifiers into a small number of activity
groups. In the present research, since the electricity consumption of
the individuals are concerned, the status of the consumer is divided

into 4 states with different consumption levels: (1) away, (2) sleep-
ing, (3) home with high consumption (washing, cooking, etc.) and
(4) home with low consumption. More detailed clustering can also
be done, by consider more activity groups with more detailed types.

2.1. Markov chain model with deterministic parameters

In order to formalize the idea, let us consider the probability
triple (S, FS, �), where S = {1, . . . , n} is the finite set of activity
groups, FS is a �-algebra on S and � = [�1, . . .,  �n] is the probability
measure (probability mass function) on (S, FS), which is referred to
as the state distribution. Let X = {X1, X2, . . . } denote the states that a
Markov chain resides in at different times, with Xt ∈ S, t = 1, 2, . . ..
Let Pt denote the transition matrix at time t of this chain with its
ijth component, pt

ij
, defined by

pt
ij = Pr(Xt+1 = j|Xt = i). (1)

Transition matrices, also referred to as stochastic matrices,
are square matrices with non-negative components satisfying∑n

j=1pt
ij

= 1, ∀t, ∀i ∈ S. In time-homogeneous chains, where tran-
sition matrices do not change with time, the dynamics of the
state distributions {�t} is governed by the following finite-memory
equation

�t+1 = �tP. (2)

In modeling the activity dynamics, �t = [�1, . . .,  �n]t can be thought
of as detailing the ratio of people at different activity groups at time
t.

In order to estimate the parameters of a Markov chain, i.e. tran-
sition probabilities, the observation data on the states of the chain
over a time period is used. In our case, the TU survey provides valu-
able information on the status of the activities, which is the states
of the Markov chain. The deterministic estimation of the transition
probabilities is then involve

pij = cij∑
kcik

, (3)

where cij denotes the number of observed transitions from state i
to state j.

2.2. Markov chain model with stochastic parameters

A Markov chain with deterministic parameters may fail to be a
reliable representative for the population of the consumers. That
may  be because the inherent variability of the individuals together
with the inevitable incompleteness of the data, may result in differ-
ent estimated values for Markov transition matrices given different
sets of data [22]. An approach to lend reliability to these models
consists in introducing variabilities into these parameters. In order
to characterize such variabilities, we represent the parameters of
the Markov models, i.e. the transition probabilities, as random vari-
ables. To this end, a probabilistic model has been introduced in
[22] to characterize the uncertainties in random transition matrices
(RTM).

In order to lay out the setting for the probabilistic treatment
of Markov chain parameters, we  form the set of admissible transi-
tion matrices, denoted by P, and the set of admissible probability
measures on the set S, denoted by  ̆ as follows:

 ̆ = {� ∈ R
1×n|

n∑
i=1

�i = 1, �i ∈ [0,  1]}

P = {P ∈ R
n×n|

n∑
j=1

[P]ij = 1, ∀i ∈ S, pij ∈ [0,  1]}
(4)
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