Abstract

Background: Chinese herbal medicine (CHM) is of noteworthy international interest due to its potential impact on healthcare and manifests numerous opportunities for new drug development. However, solid scientific evidence is still lacking regarding the safety, efficacy, and quality of CHM-derived medicines. Success in the modernization and globalization of CHM is heavily dependent on the achievements in advanced analytical techniques for in-line checks of CHM quality. Raman spectroscopy has become increasingly valued as an analytical technique in the pharmaceutical sector because it can provide a detailed chemical fingerprint. However, earlier research suggests that inadequate attention has been paid to the applications of Raman spectroscopy in CHM.

Methods: Chinese and English literatures were reviewed via PubMed and Medicine databases, and through manual searches using keywords including traditional Chinese medicines, herbs, quality control, and Raman spectroscopy.

Results: Applications of Raman spectroscopy in various aspects of CHM, including the identification and analysis of raw materials, in-line checks of formulation, characterization of adulterants, and detection of counterfeits, were reviewed systematically.

Conclusion: An updated systematic review of the published literature has been conducted to analyze the most important milestones and latest achievements in this topic. Raman spectroscopy is playing an increasingly important role in the quality control of CHM and effectively promotes the modernization of CHM.

Copyright © 2017, the Chinese Medical Association. Published by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: analytical technique; Chinese herbal medicine; modernization; Raman spectroscopy

1. Introduction

Chinese herbal medicine (CHM) is attracting global attention due to its potential impact on healthcare and burgeoning opportunities for new drug development.1,2 Over the past two decades, the CHM field has witnessed great progress in modern research directed at clinical trial evaluation, pharmacological mechanisms/pharmaceutics investigations, and new drug discovery.2–5 However, we are still facing challenges in shifting experience-based CHM to evidence-based medicine, to promote its modernization and worldwide acceptance. These challenges primarily lie in the multicomponent and multispecies composition features of many CHMs, and the widely reported deficiencies in CHM standardization and quality control. Solid scientific evidence of safety, efficacy, and quality is still lacking, although highly desirable.1–4 The success of these medicines is no doubt strongly dependent on the achievements of the fundamental understanding of pharmacology/pharmaceutics, rigorous quality control of herb...
medicine, and effective development of new drugs. CHM quality control takes priority in the whole chain of research toward its modernization. The herbs should be correctly authenticated to confirm their botanical origin prior to any designed biological and clinical research. Active pharmaceutical ingredients (APIs) should be well identified and their changes during manufacturing process should be well monitored to assure clinical effectiveness and safety. Therefore, development of comprehensive quality control approaches that are suitable for the multiple-component feature of CHM is extremely important.

Analytical methods such as thin-layer chromatography, high-performance liquid chromatography, ultra-high-performance liquid chromatography, and liquid or gas chromatography–mass spectrometry have been proposed, developed, and used in the fingerprinting of herbal medicines. These approaches can provide results with high reliability and accuracy, but generally require a cumbersome pretreatment and a time-consuming procedure. In addition, experimental conditions are rigorous and instruments are expensive, which limit their practical application. The use of spectroscopic techniques in terms of infrared (IR) and Raman spectroscopy is advantageous because the analyses are rapid, nondestructive, noninvasive, and simple for purposes of sample preparation. These techniques provide fingerprint information (such as molecular conformation, structure, intermolecular interaction, and chemical bonding) by way of probing the associated molecular vibration and rotational energy changes. IR spectroscopy is based on absorption, while Raman spectroscopy is based on inelastic light scattering. These vibrations with molecular dipole moment changes are IR active, and those with polarization potential changes are Raman active.

Raman spectroscopy is complementary to IR spectroscopy and is of particular interest in the pharmaceutical sector due to the following reasons: (1) inherently high chemical specificity and ability to provide molecular information without requiring staining or labeling, and (2) low sensitivity to water, consequently making analysis of aqueous or damp materials, including illegal narcotics, possible. These advantages, coupled with fiber optics and microscopes, have enabled Raman spectroscopy to be an effective quality control tool in the pharmaceutical industry. It serves as an ideal instrument for the characterization and authentication of herbs, detection of counterfeits, and facilitation of new drug development. Raman spectroscopy with probes can also be used for continuous quality control in formulation manufacturing. Applications of Raman spectroscopy in the pharmaceutical industry range from use in the laboratory to on dock to production lines until the product is shelved. There are many excellent review articles dealing with the basic principles and applications of Raman spectroscopy. Various novel types of techniques such as FT-Raman spectroscopy, transmission Raman spectroscopy, and surface-enhanced Raman scattering (SERS) have been developed. These technological variations open up a new era for Raman spectroscopy applications in mainstream pharmaceutical analysis.

3.2. Applications of Raman spectroscopy in quality control of CHM

Accurate detection, identification, and quantification of raw materials and APIs; in-process checks of CHM quality; and
دریافت فوری 
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات

ISI Articles
مرجع مقالات تخصصی ایران