A multi-attribute decision model for setting production planning parameters

Isaac Pergher*, Adiel Teixeira de Almeida

Universidade Federal de Pernambuco, CDSID - Center for Decision Systems and Information Development, Av. Acadêmico Hélio Ramos, 4/n—Cidade Universitária, Recife, PE, CEP 50.740-530, Brazil

ARTICLE INFO

Article history:
Received 25 April 2016
Received in revised form 5 December 2016
Accepted 28 December 2016

Keywords:
Production planning parameters
Conwip
Make-to-stock
Multi-attribute utility theory
Discrete event simulation

ABSTRACT

Production and inventory-related decisions, which significantly influence each other and sometimes involve multiple attributes, trade-off assessment and uncertainties, serve a key role in the performance of make-to-stock (mts) manufacturing systems that are controlled by a constant work in process (conwip) order release policy. To benefit from established production planning methods, a crucial task in this context is to define suitable production parameter settings for a given planning horizon. To address this problem, we present a multi-attribute decision model to determine appropriate settings for the planning parameters, namely, cycle time, throughput rate, holding cost and stockout cost. The proposed model uses discrete event simulation to evaluate the performance of a conwip/mts manufacturing system in relation to the work in process and finished goods inventory. Analysis of variance (ANOVA) and a Kruskal-Wallis test are conducted to verify the significant effect on the analyzed parameters. The compromise solution that is recommended for the conwip/mts problem is obtained by considering a multi-attribute expected utility function that is representative of a decision maker's preferences and risk attitude regarding the probability distribution of the simulation outputs. In contrast with previous studies on planning parameter setting, the result compensates the low performance of one of the attributes as a result of the high performance of another attribute, based on the axiomatic structure of MAUT.

Based on the real data of a multi-product assembly line, a numerical application is employed to visualize the steps of this decision model and to demonstrate its usefulness in practical issues.

© 2016 Published by Elsevier Ltd on behalf of The Society of Manufacturing Engineers.

1. Introduction

The main focus of this study is conwip/mts production control systems [1]. From a planning and control point of view, an important issue in this context is to identify suitable settings for the inherent production parameters. Because the conwip/mts system performance can be affected by various factors, including work in process [2] and the finished products inventory, determining the best compromise solution by considering the uncertainties of multiple conflicting objectives causes challenging production planning problems.

A significant body of literature is dedicated to the discussion of the conwip policy from various perspectives. Hopp and Roof [3] present a production control method, which is termed statistical throughput control (STC), to satisfy a target throughput rate with minimum work in process and cycle time in a pull system production that operates according to the conwip policy. STC monitors the average throughput of the system after the completion of each job and adds or retrieves one card when it is out of a control interval, which is set according to a target throughput. Its application is demonstrated on single product, multi-product and assembly systems using simulation. A similar problem is discussed in Framinan et al. [4], who propose a card-controlling procedure for conwip/mts and make-to-order policies that employ extra cards that will be added or subtracted to the system.

The majority of publications are devoted to conwip employ simulation to investigate complex production systems. However, numerous studies investigate discrete event simulation with optimization techniques to improve a given objective function. Xanthopoulos and Koulouriotis [5] examined four manufacturing systems that are controlled by kanban, base stock, conwip, and conwip-kanban hybrid policies. Optimal or nearoptimal parameters for the control policies are obtained by integrating the simulation models with a multi-objective evolutionary algorithm. In this case, mean work in process and mean number of back-

* Corresponding author.
E-mail addresses: eng.isaac@hotmail.com (I. Pergher), almeida@cdsid.org.br (A.T. de Almeida).

http://dx.doi.org/10.1016/j.jmsy.2016.12.012
0278-6125/© 2016 Published by Elsevier Ltd on behalf of The Society of Manufacturing Engineers.
rdered demands are simultaneously minimized, and the resulting nondominated sets are obtained for each control policy. The non-
dominated sets are compared in terms of several published metrics
to compare Pareto fronts.

The impact of product mix on the performance of pull systems
has been discussed in Onyecoha [8]. A simulation-based multi-
objective optimization technique was adopted to examine the
effect of different product mixes on generalized kanban control,
extended kanban control and base stock kanban-conwip strategies
for a healthcare parallel/serial assembly line with setup times. The
average total service level, backlogs and work in process for each
simulation experiment was recorded, and the Nelson’s ranking
and selection approach was applied to the results to compare the results
and ascertain the best strategy.

programming approach to learn how to decide when modifying the
number of cards in pull systems is worthwhile. The objective func-
tion corresponds to the expected value of inventory and backorder
average costs. Similarly, Onyecoha et al. [8] applied simulation and
a genetic algorithm to investigate the effect of erratic demand on
the performance of pull system production in a multi-product lean
manufacturing environment. In this context, the objective function
ensures the selection of control parameters that can achieve zero
backlogs with a minimum inventory.

Analytical and optimization models have been employed to
determine the production parameters in stochastic manufacturing
systems. Park and Lee [9] develop an approximation algorithm that
is based on a decomposition method to analyze a multi-product
assembly system according to conwip policy. In the algorithm, a
product–form approximation technique and a matrix–geometric
method are employed. The objective is to obtain key performance
measures, such as the joint stationary distribution of outstanding
orders for each component, machine utilization, the mean inven-
tory level of each component and the probability that an order will
be filled from inventory. Aglan and Durmusoglu [10] propose a lin-
ear conwip control model that minimizes the average flow time and
is developed for the case of lot splitting with sequence-dependent
setup times. In a mathematical model by Ajourlou and Shams [11], an
artificial bee colony optimization algorithm is applied to simulta-
aneously obtain the optimal work in process level and job sequence
order to minimize the total makespan time. A multi-product and
multi-machine serial production line that is operated according to
conwip policy is considered. For a conwip-based production
system, Cao and Chen [12] developed a nonlinear mixed integer
programming model to simultaneously determine optimal part
assignment, optimal production sequences and optimal lot sizes.

Pandey et al. [13] propose a distributed feedback control algorithm
that is termed the adaptive logistic controller (ALC) for distributed
supply chains. In this approach, each stage runs its manufactur-
ing operations using a self-regulating production control system
(SPCS), such as the use of buffered lines, kanban, base stock, conwip
or inverse base stock. The ALC determines the parameters of each
SPCS and lot size that are transported between each adjacent stage,
with the objective of minimizing the sum of the transportation cost
and work in process cost. Considering the scenario in which ALC
algorithms were implemented, the ALC with quasi-gradient search
has the worst computation time performance but the best solution
quality. However, the computation time for the ALC algorithm can
be considerably reduced by distributing it over several processors.

Contributions that involve discrete event simulation and multi-
criteria decision-making (MCDM) are discussed in several studies.
Azadeh et al. [14] explored the incorporation of fuzzy set theory
with discrete event simulation to model uncertain attribute dura-
tion. A case study is developed to select a scenario to implement a
maintenance program in a conwip system. Thus, the fuzzy simula-
tion result is applied to establish a fuzzy multi-attribute decision
making model to select the best scenario. Lu et al. [15] proposed a
lean pull system implementation procedure by combining a super-
market supply with two conwip structures. To evaluate the most
robust production control strategy, applied simulation, the Taguchi
technique and TOPSIS were employed to support multicriteria
decision-making. The study adopts work in process, cycle time and
throughput rate as the performance criteria. Value stream mapping
was applied to compare the current-state map and the future-state
map of the case study. However, the incorporation of the stock-
out cost and holding cost in the performance criteria is a possible
suggestion for improvement.

Chan et al. [16] explore the operational problems of schedul-
ing rules via simulation and fuzzy multicriteria decision making
techniques. Xu et al. [17] present a case study that integrates a sim-
ulation with an analytic hierarchy process (AHP), which is applied
to the design of a transmission case line in a Korean automotive
factory. This research considered the following criteria perfor-
ance parameters: cycle time, work in process, throughput rate
and investment cost. Rabelo et al. [18] employed simulation and the
AHP to model the service and manufacturing activities of the global
supply chain of a multinational construction equipment corpora-
tion. The AHP is a well-known MCDM method, which approaches
problems in which uncertainties are not considered.

Persentili and Alptekin [19] employed simulation and a deter-
nomistic weighted sum model to compare the performance of a JIT-pull
with an MRP-push strategy based on following perfor-
mance measures: manufacturing lead time, work-in-process,
backorders, machine utilization and throughput. Borenstein [20]
develop a visual interactive multicriteria model that is aimed at
the evaluation of a flexible manufacturing system with compet-
ing design alternatives. It considers a designer’s preferences and
wishes to customize the manufacturing system for a user’s partic-
ular situation. This model combines visual interactive modelling
and a deterministic weighted sum model to support a decision-
making process. The alternatives were simulated and ScoreFlex
software was applied to provide a global score to each alternative
considering the following criteria: flexibility, risk, cost and perfor-
mance.

We propose a multi-attribute decision model that is based on
the theoretical background of discrete event simulation [21] and
multi-attribute utility theory (MAUT) [22]. This model aggregates
a decision maker’s preferences in a multi-attribute expected utility
function that considers the probability distribution of the simula-
tion outputs and the influence of conflicting objectives over the
decision attributes cycle time, throughput rate, holding cost and
stockout cost. Within a wider decision-making perspective, this
study differs from existing studies on conwip topics by considering
the possibility of selecting an alternative of parameters setting in
a context of uncertainty. MAUT has been applied to model several
practical challenges in production management problems, such as
the newsvendor problem with partial backlogging [23].

MAUT compensates the low performance of one of the attributes
as a result of the high performance of another attribute. This com-
ensation is the trade-off [22] that is provided by the axiomatic
structures of MAUT in accordance with a decision maker’s pre-
ference structure. MAUT uses a compensatory rationality that
contrasts with noncompensatory MCDM methods [24]. Therefore,
trade-offs and preference judgments concerning the levels of work
in process and finished products inventory must be evaluated for
the multiple attributes to identify the best compromise solution for
a specific planning horizon.

The remainder of this paper is organized as follows: In Section
2, a conwip/mts multi-attribute decision model is proposed. Section
3 provides a description of the multi-product assembly line and
the experimental results. A discussion of the results in Section 4
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات