Techno-economic assessment of solid–gas thermochemical energy storage systems for solar thermal power applications

Alicia Bayon, Roman Bader, Mehdi Jafarian, Larissa Fedunik-Hofman, Yanping Sun, Jim Hinkley, Sarah Miller, Wojciech Lipiński

PII: S0360-5442(17)31942-4
DOI: 10.1016/j.energy.2017.11.084
Reference: EGY 11872

To appear in: Energy

Received Date: 18 April 2017
Revised Date: 27 October 2017
Accepted Date: 14 November 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Techno-economic assessment of solid–gas thermochemical energy storage systems for solar thermal power applications

Alicia Bayon¹*, Roman Bader², Mehdi Jafarian³, Larissa Fedunik-Hofman¹,⁴, Yanping Sun¹, Jim Hinkley¹, Sarah Miller¹ and Wojciech Lipiński²,**

¹CSIRO Energy, P. O. Box 330, Newcastle, NSW 2300, Australia
²Research School of Engineering, The Australian National University, Canberra, ACT 2601, Australia
³Centre for Energy Technology, The University of Adelaide, Adelaide, SA 5005, Australia
⁴School of Environmental & Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia

*First corresponding author: alicia.bayonsandoval@csiro.au
**Second corresponding author: wojciech.lipinski@anu.edu.au

Abstract
Thermochemical energy storage (TCES) systems are a promising alternative to conventional molten salt systems for integration with solar thermal power plants. TCES systems can offer high storage densities and high storage temperatures. Thus, they have the potential to increase the efficiency and reduce the levelized cost of electricity of solar thermal power plants. The present study investigates reacting systems with alkaline carbonates and hydroxides and metal oxides performing redox and chemical looping combustion reactions for their near-term deployment potential. 17 solid–gas TCES systems are identified from the initial set of 21 systems for techno-economic assessment. A quantitative assessment methodology based on techno-economic performance indicators (TPIs) is proposed for the comparative analysis. The techno-economic analysis indicates that energy consumption by auxiliary equipment and the cost of the feedstock are the most important factors affecting the system capital cost. Eight TCES systems are identified as competitive with molten salts in the near term, with an estimated capital cost lower than $25 MJ⁻¹: hydroxide looping with Ca(OH)₂/CaO, Sr(OH)₂/SrO and Ba(OH)₂/BaO; carbonate looping with CaCO₃/CaO and SrCO₃/SrO; redox with BaO₂/BaO and chemical looping combustion with Fe₃O₄/FeO and NiO/Ni.

Keywords: thermal energy storage, solar, power, techno-economics.

1. Introduction
Concentrated solar thermal power (CSP) technologies can become cost competitive with conventional power generation technologies within a decade through a combination of
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی	✓
امکان دانلود نسخه ترجمه شده مقالات	✓
پذیرش سفارش ترجمه تخصصی	✓
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله	✓
امکان دانلود رایگان ۲ صفحه اول هر مقاله	✓
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب	✓
دانلود فوری مقاله پس از پرداخت آنلاین	✓
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات	✓